Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import os | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load CodeT5 model from Hugging Face | |
MODEL_NAME = "Salesforce/codet5-large" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) | |
def translate_code(code_snippet, source_lang, target_lang): | |
""" | |
Translate code using CodeT5 model. | |
""" | |
prompt = f"Translate this {source_lang} code to {target_lang}:\n\n{code_snippet}" | |
# Tokenize and generate translation | |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
outputs = model.generate(**inputs, max_length=512) | |
# Decode the output | |
translated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return translated_code | |
# Streamlit UI | |
st.title("🔄 Code Translator (Python, Java, C++, C)") | |
st.write("Translate code between Python, Java, C++, and C.") | |
languages = ["Python", "Java", "C++", "C"] | |
source_lang = st.selectbox("Select source language", languages) | |
target_lang = st.selectbox("Select target language", languages) | |
code_input = st.text_area("Enter your code here:", height=200) | |
if st.button("Translate"): | |
if code_input.strip(): | |
with st.spinner("Translating..."): | |
translated_code = translate_code(code_input, source_lang, target_lang) | |
st.subheader("Translated Code:") | |
st.code(translated_code, language=target_lang.lower()) | |
else: | |
st.warning("⚠️ Please enter some code before translating.") | |