Spaces:
Sleeping
Sleeping
Update translator.py
Browse files- translator.py +34 -25
translator.py
CHANGED
@@ -1,33 +1,42 @@
|
|
|
|
1 |
import requests
|
2 |
import os
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
# Define model and API endpoint
|
9 |
-
MODEL_ID = "bigcode/starcoder"
|
10 |
-
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
11 |
-
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
|
12 |
|
13 |
def translate_code(code_snippet, source_lang, target_lang):
|
14 |
"""
|
15 |
-
Translate code using
|
16 |
"""
|
17 |
-
prompt = f"Translate
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
else:
|
24 |
-
|
25 |
-
|
26 |
-
# Example usage
|
27 |
-
source_code = """
|
28 |
-
def add(a, b):
|
29 |
-
return a + b
|
30 |
-
"""
|
31 |
-
translated_code = translate_code(source_code, "Python", "Java")
|
32 |
-
print("Translated Java Code:\n", translated_code)
|
33 |
-
|
|
|
1 |
+
import streamlit as st
|
2 |
import requests
|
3 |
import os
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
|
6 |
+
# Load CodeT5 model from Hugging Face
|
7 |
+
MODEL_NAME = "Salesforce/codet5-large"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def translate_code(code_snippet, source_lang, target_lang):
|
12 |
"""
|
13 |
+
Translate code using CodeT5 model.
|
14 |
"""
|
15 |
+
prompt = f"Translate this {source_lang} code to {target_lang}:\n\n{code_snippet}"
|
16 |
+
|
17 |
+
# Tokenize and generate translation
|
18 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
19 |
+
outputs = model.generate(**inputs, max_length=512)
|
20 |
+
|
21 |
+
# Decode the output
|
22 |
+
translated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
+
return translated_code
|
24 |
+
|
25 |
+
# Streamlit UI
|
26 |
+
st.title("🔄 Code Translator (Python, Java, C++, C)")
|
27 |
+
st.write("Translate code between Python, Java, C++, and C.")
|
28 |
+
|
29 |
+
languages = ["Python", "Java", "C++", "C"]
|
30 |
+
|
31 |
+
source_lang = st.selectbox("Select source language", languages)
|
32 |
+
target_lang = st.selectbox("Select target language", languages)
|
33 |
+
code_input = st.text_area("Enter your code here:", height=200)
|
34 |
+
|
35 |
+
if st.button("Translate"):
|
36 |
+
if code_input.strip():
|
37 |
+
with st.spinner("Translating..."):
|
38 |
+
translated_code = translate_code(code_input, source_lang, target_lang)
|
39 |
+
st.subheader("Translated Code:")
|
40 |
+
st.code(translated_code, language=target_lang.lower())
|
41 |
else:
|
42 |
+
st.warning("⚠️ Please enter some code before translating.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|