MLDeveloper's picture
Update app.py
bd3fb72 verified
raw
history blame
4.22 kB
import streamlit as st
import pandas as pd
import google.generativeai as genai
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Set page configuration
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered")
# Initialize Gemini
api_key = os.getenv("GOOGLE_API_KEY")
if api_key:
genai.configure(api_key=api_key)
else:
st.error("API key is missing. Please set the GOOGLE_API_KEY environment variable.")
model = genai.GenerativeModel("gemini-1.5-flash")
# Load solar data
@st.cache_data
def load_data():
df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv')
return df
df = load_data()
# Solar Calculation Function (not relying on Gemini for calculation)
def calculate_solar_estimate(roof_size, monthly_bill, electricity_price, ghi, cost_per_kw):
daily_consumption_inr = monthly_bill / 30
daily_consumption_kwh = daily_consumption_inr / electricity_price
# Assume system size based on consumption
estimated_system_size_kw = 3 # Fixed for now as realistic estimate
peak_sun_hours = ghi # Use GHI as sun hours (approximation)
daily_solar_output_kwh = estimated_system_size_kw * peak_sun_hours * 0.75 # considering derating factor
total_system_cost = estimated_system_size_kw * cost_per_kw
monthly_generation_kwh = daily_solar_output_kwh * 30
monthly_savings_inr = monthly_generation_kwh * electricity_price
annual_savings_inr = monthly_savings_inr * 12
payback_period_years = total_system_cost / annual_savings_inr
return {
"Estimated solar system size in kW": round(estimated_system_size_kw, 2),
"Estimated daily solar output in kWh": round(daily_solar_output_kwh, 2),
"Total system cost in ₹": int(total_system_cost),
"Monthly savings in ₹": int(monthly_savings_inr),
"Payback period in years": round(payback_period_years, 2)
}
# UI - Form
st.title("AI-based Solar Project Estimation Tool")
st.write("### Enter Your Details:")
with st.form("solar_form"):
state_options = df['State'].dropna().unique()
location = st.selectbox("Select your State", options=sorted(state_options))
roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1)
monthly_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0)
submitted = st.form_submit_button("Get Estimate")
if submitted and location and roof_size > 0 and monthly_bill >= 0:
state_data = df[df['State'].str.contains(location, case=False)].iloc[0]
if state_data is not None:
ghi = state_data['Avg_GHI (kWh/m²/day)']
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)']
electricity_price = 8 # Assume ₹8/kWh
# Calculate estimates
estimates = calculate_solar_estimate(roof_size, monthly_bill, electricity_price, ghi, solar_cost_per_kw)
# Build clean prompt for Gemini to verify the calculation
prompt = f"""
ONLY output these 5 points based on inputs:
1. Estimated solar system size in kW
2. Estimated daily solar output in kWh
3. Total system cost in ₹
4. Monthly savings in ₹
5. Payback period in years
Roof size = {roof_size} sq meters
Monthly bill = ₹{monthly_bill}
GHI = {ghi} kWh/m²/day
Solar system cost per kW = ₹{solar_cost_per_kw}
Use no description. Only numeric values clearly.
"""
# Call Gemini API (just to double-check/validate if you want)
with st.spinner("Generating final estimate..."):
gemini_response = model.generate_content(prompt)
final_response = gemini_response.text.strip()
# Display calculated values directly (without trusting Gemini text output)
st.subheader("Solar Project Estimate")
for key, value in estimates.items():
st.write(f"{key}: {value}")
else:
st.error("Location data not found. Please select a valid state.")
else:
st.warning("Please fill all the fields.")