|
import streamlit as st |
|
import pandas as pd |
|
import google.generativeai as genai |
|
import os |
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered") |
|
|
|
|
|
api_key = os.getenv("GOOGLE_API_KEY") |
|
if api_key: |
|
genai.configure(api_key=api_key) |
|
else: |
|
st.error("API key is missing. Please set the GOOGLE_API_KEY environment variable.") |
|
|
|
model = genai.GenerativeModel("gemini-1.5-flash") |
|
|
|
|
|
@st.cache_data |
|
def load_data(): |
|
df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv') |
|
return df |
|
|
|
df = load_data() |
|
|
|
|
|
def calculate_solar_estimate(roof_size, monthly_bill, electricity_price, ghi, cost_per_kw): |
|
daily_consumption_inr = monthly_bill / 30 |
|
daily_consumption_kwh = daily_consumption_inr / electricity_price |
|
|
|
|
|
estimated_system_size_kw = 3 |
|
peak_sun_hours = ghi |
|
|
|
daily_solar_output_kwh = estimated_system_size_kw * peak_sun_hours * 0.75 |
|
|
|
total_system_cost = estimated_system_size_kw * cost_per_kw |
|
|
|
monthly_generation_kwh = daily_solar_output_kwh * 30 |
|
monthly_savings_inr = monthly_generation_kwh * electricity_price |
|
|
|
annual_savings_inr = monthly_savings_inr * 12 |
|
payback_period_years = total_system_cost / annual_savings_inr |
|
|
|
return { |
|
"Estimated solar system size in kW": round(estimated_system_size_kw, 2), |
|
"Estimated daily solar output in kWh": round(daily_solar_output_kwh, 2), |
|
"Total system cost in ₹": int(total_system_cost), |
|
"Monthly savings in ₹": int(monthly_savings_inr), |
|
"Payback period in years": round(payback_period_years, 2) |
|
} |
|
|
|
|
|
st.title("AI-based Solar Project Estimation Tool") |
|
st.write("### Enter Your Details:") |
|
|
|
with st.form("solar_form"): |
|
state_options = df['State'].dropna().unique() |
|
|
|
location = st.selectbox("Select your State", options=sorted(state_options)) |
|
roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1) |
|
monthly_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0) |
|
|
|
submitted = st.form_submit_button("Get Estimate") |
|
|
|
if submitted and location and roof_size > 0 and monthly_bill >= 0: |
|
state_data = df[df['State'].str.contains(location, case=False)].iloc[0] |
|
|
|
if state_data is not None: |
|
ghi = state_data['Avg_GHI (kWh/m²/day)'] |
|
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)'] |
|
electricity_price = 8 |
|
|
|
|
|
estimates = calculate_solar_estimate(roof_size, monthly_bill, electricity_price, ghi, solar_cost_per_kw) |
|
|
|
|
|
prompt = f""" |
|
ONLY output these 5 points based on inputs: |
|
1. Estimated solar system size in kW |
|
2. Estimated daily solar output in kWh |
|
3. Total system cost in ₹ |
|
4. Monthly savings in ₹ |
|
5. Payback period in years |
|
|
|
Roof size = {roof_size} sq meters |
|
Monthly bill = ₹{monthly_bill} |
|
GHI = {ghi} kWh/m²/day |
|
Solar system cost per kW = ₹{solar_cost_per_kw} |
|
|
|
Use no description. Only numeric values clearly. |
|
""" |
|
|
|
|
|
with st.spinner("Generating final estimate..."): |
|
gemini_response = model.generate_content(prompt) |
|
final_response = gemini_response.text.strip() |
|
|
|
|
|
st.subheader("Solar Project Estimate") |
|
|
|
for key, value in estimates.items(): |
|
st.write(f"{key}: {value}") |
|
else: |
|
st.error("Location data not found. Please select a valid state.") |
|
else: |
|
st.warning("Please fill all the fields.") |
|
|