Update app.py
Browse files
app.py
CHANGED
@@ -2,18 +2,15 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import google.generativeai as genai
|
4 |
import os
|
5 |
-
from io import StringIO
|
6 |
-
import csv
|
7 |
from dotenv import load_dotenv
|
8 |
|
9 |
-
|
10 |
-
# Load environment variables from .env file
|
11 |
load_dotenv()
|
12 |
|
13 |
-
# Set page configuration
|
14 |
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered")
|
15 |
|
16 |
-
# Initialize Gemini
|
17 |
api_key = os.getenv("GOOGLE_API_KEY")
|
18 |
if api_key:
|
19 |
genai.configure(api_key=api_key)
|
@@ -30,67 +27,85 @@ def load_data():
|
|
30 |
|
31 |
df = load_data()
|
32 |
|
33 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
st.title("AI-based Solar Project Estimation Tool")
|
35 |
-
st.write("### Enter Your Details
|
36 |
|
37 |
with st.form("solar_form"):
|
38 |
state_options = df['State'].dropna().unique()
|
39 |
|
40 |
location = st.selectbox("Select your State", options=sorted(state_options))
|
41 |
roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1)
|
42 |
-
|
43 |
|
44 |
submitted = st.form_submit_button("Get Estimate")
|
45 |
|
46 |
-
|
47 |
-
def build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw):
|
48 |
-
prompt = f"""
|
49 |
-
Estimate the solar system for the location '{location}' based on the following details:
|
50 |
-
- Roof size: {roof_size} sq meters
|
51 |
-
- Monthly electricity bill: ₹{electricity_bill}
|
52 |
-
- Average GHI (solar radiation) for {location}: {ghi} kWh/m²/day
|
53 |
-
- Solar system cost per kW in {location}: ₹{solar_cost_per_kw}
|
54 |
-
Provide the following:
|
55 |
-
1. Estimated solar system size in kW
|
56 |
-
2. Estimated daily solar output in kWh
|
57 |
-
3. Total system cost in ₹
|
58 |
-
4. Monthly savings in ₹
|
59 |
-
5. Payback period in years
|
60 |
-
"""
|
61 |
-
return prompt
|
62 |
-
|
63 |
-
# Generate the solar project estimate via Gemini
|
64 |
-
if submitted and location and roof_size > 0 and electricity_bill >= 0:
|
65 |
state_data = df[df['State'].str.contains(location, case=False)].iloc[0]
|
66 |
|
67 |
if state_data is not None:
|
68 |
ghi = state_data['Avg_GHI (kWh/m²/day)']
|
69 |
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)']
|
|
|
70 |
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
76 |
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
st.subheader("Solar Project Estimate")
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
# Display only the required points: system size, cost, savings, and payback period
|
84 |
-
for point in estimated_data:
|
85 |
-
if ":" in point: # Only process lines with a colon
|
86 |
-
try:
|
87 |
-
# Extract the value after the colon
|
88 |
-
key, value = point.split(":", 1) # Split into two parts only
|
89 |
-
st.write(f"{key.strip()}: {value.strip()}")
|
90 |
-
except ValueError:
|
91 |
-
# Handle cases where the line doesn't split into two parts
|
92 |
-
st.warning("There was an issue processing the response.")
|
93 |
else:
|
94 |
-
st.error("
|
95 |
else:
|
96 |
-
st.warning("Please fill
|
|
|
2 |
import pandas as pd
|
3 |
import google.generativeai as genai
|
4 |
import os
|
|
|
|
|
5 |
from dotenv import load_dotenv
|
6 |
|
7 |
+
# Load environment variables
|
|
|
8 |
load_dotenv()
|
9 |
|
10 |
+
# Set page configuration
|
11 |
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered")
|
12 |
|
13 |
+
# Initialize Gemini
|
14 |
api_key = os.getenv("GOOGLE_API_KEY")
|
15 |
if api_key:
|
16 |
genai.configure(api_key=api_key)
|
|
|
27 |
|
28 |
df = load_data()
|
29 |
|
30 |
+
# Solar Calculation Function (not relying on Gemini for calculation)
|
31 |
+
def calculate_solar_estimate(roof_size, monthly_bill, electricity_price, ghi, cost_per_kw):
|
32 |
+
daily_consumption_inr = monthly_bill / 30
|
33 |
+
daily_consumption_kwh = daily_consumption_inr / electricity_price
|
34 |
+
|
35 |
+
# Assume system size based on consumption
|
36 |
+
estimated_system_size_kw = 3 # Fixed for now as realistic estimate
|
37 |
+
peak_sun_hours = ghi # Use GHI as sun hours (approximation)
|
38 |
+
|
39 |
+
daily_solar_output_kwh = estimated_system_size_kw * peak_sun_hours * 0.75 # considering derating factor
|
40 |
+
|
41 |
+
total_system_cost = estimated_system_size_kw * cost_per_kw
|
42 |
+
|
43 |
+
monthly_generation_kwh = daily_solar_output_kwh * 30
|
44 |
+
monthly_savings_inr = monthly_generation_kwh * electricity_price
|
45 |
+
|
46 |
+
annual_savings_inr = monthly_savings_inr * 12
|
47 |
+
payback_period_years = total_system_cost / annual_savings_inr
|
48 |
+
|
49 |
+
return {
|
50 |
+
"Estimated solar system size in kW": round(estimated_system_size_kw, 2),
|
51 |
+
"Estimated daily solar output in kWh": round(daily_solar_output_kwh, 2),
|
52 |
+
"Total system cost in ₹": int(total_system_cost),
|
53 |
+
"Monthly savings in ₹": int(monthly_savings_inr),
|
54 |
+
"Payback period in years": round(payback_period_years, 2)
|
55 |
+
}
|
56 |
+
|
57 |
+
# UI - Form
|
58 |
st.title("AI-based Solar Project Estimation Tool")
|
59 |
+
st.write("### Enter Your Details:")
|
60 |
|
61 |
with st.form("solar_form"):
|
62 |
state_options = df['State'].dropna().unique()
|
63 |
|
64 |
location = st.selectbox("Select your State", options=sorted(state_options))
|
65 |
roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1)
|
66 |
+
monthly_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0)
|
67 |
|
68 |
submitted = st.form_submit_button("Get Estimate")
|
69 |
|
70 |
+
if submitted and location and roof_size > 0 and monthly_bill >= 0:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
state_data = df[df['State'].str.contains(location, case=False)].iloc[0]
|
72 |
|
73 |
if state_data is not None:
|
74 |
ghi = state_data['Avg_GHI (kWh/m²/day)']
|
75 |
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)']
|
76 |
+
electricity_price = 8 # Assume ₹8/kWh
|
77 |
|
78 |
+
# Calculate estimates
|
79 |
+
estimates = calculate_solar_estimate(roof_size, monthly_bill, electricity_price, ghi, solar_cost_per_kw)
|
80 |
+
|
81 |
+
# Build clean prompt for Gemini to verify the calculation
|
82 |
+
prompt = f"""
|
83 |
+
ONLY output these 5 points based on inputs:
|
84 |
+
1. Estimated solar system size in kW
|
85 |
+
2. Estimated daily solar output in kWh
|
86 |
+
3. Total system cost in ₹
|
87 |
+
4. Monthly savings in ₹
|
88 |
+
5. Payback period in years
|
89 |
|
90 |
+
Roof size = {roof_size} sq meters
|
91 |
+
Monthly bill = ₹{monthly_bill}
|
92 |
+
GHI = {ghi} kWh/m²/day
|
93 |
+
Solar system cost per kW = ₹{solar_cost_per_kw}
|
94 |
|
95 |
+
Use no description. Only numeric values clearly.
|
96 |
+
"""
|
97 |
+
|
98 |
+
# Call Gemini API (just to double-check/validate if you want)
|
99 |
+
with st.spinner("Generating final estimate..."):
|
100 |
+
gemini_response = model.generate_content(prompt)
|
101 |
+
final_response = gemini_response.text.strip()
|
102 |
+
|
103 |
+
# Display calculated values directly (without trusting Gemini text output)
|
104 |
st.subheader("Solar Project Estimate")
|
105 |
+
|
106 |
+
for key, value in estimates.items():
|
107 |
+
st.write(f"{key}: {value}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
else:
|
109 |
+
st.error("Location data not found. Please select a valid state.")
|
110 |
else:
|
111 |
+
st.warning("Please fill all the fields.")
|