Spaces:
Running
Running
import cv2 | |
import numpy as np | |
import json | |
import gradio as gr | |
import os | |
import xml.etree.ElementTree as ET | |
# ---------------- Helper functions ---------------- | |
def get_rotated_rect_corners(x, y, w, h, rotation_deg): | |
rot_rad = np.deg2rad(rotation_deg) | |
cos_r, sin_r = np.cos(rot_rad), np.sin(rot_rad) | |
R = np.array([[cos_r, -sin_r], [sin_r, cos_r]]) | |
cx, cy = x + w/2, y + h/2 | |
local_corners = np.array([[-w/2,-h/2],[w/2,-h/2],[w/2,h/2],[-w/2,h/2]]) | |
rotated_corners = np.dot(local_corners, R.T) | |
return (rotated_corners + np.array([cx,cy])).astype(np.float32) | |
def preprocess_gray_clahe(img): | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) | |
return clahe.apply(gray) | |
def detect_and_match(img1_gray, img2_gray, method="SIFT", ratio_thresh=0.78): | |
if method=="SIFT": | |
detector=cv2.SIFT_create(nfeatures=5000); matcher=cv2.BFMatcher(cv2.NORM_L2) | |
elif method=="ORB": | |
detector=cv2.ORB_create(5000); matcher=cv2.BFMatcher(cv2.NORM_HAMMING) | |
elif method=="BRISK": | |
detector=cv2.BRISK_create(); matcher=cv2.BFMatcher(cv2.NORM_HAMMING) | |
elif method=="KAZE": | |
detector=cv2.KAZE_create(); matcher=cv2.BFMatcher(cv2.NORM_L2) | |
elif method=="AKAZE": | |
detector=cv2.AKAZE_create(); matcher=cv2.BFMatcher(cv2.NORM_HAMMING) | |
else: | |
return None,None,[] | |
kp1, des1 = detector.detectAndCompute(img1_gray,None) | |
kp2, des2 = detector.detectAndCompute(img2_gray,None) | |
if des1 is None or des2 is None: | |
return None,None,[] | |
raw_matches = matcher.knnMatch(des1,des2,k=2) | |
good = [m for m,n in raw_matches if m.distance < ratio_thresh*n.distance] | |
return kp1, kp2, good | |
def parse_xml_points(xml_file): | |
tree = ET.parse(xml_file) | |
root = tree.getroot() | |
transform = root.find('.//transform') | |
points = {} | |
for pt in transform.findall('.//point'): | |
pt_type = pt.attrib['type'] | |
x = float(pt.attrib['x']) | |
y = float(pt.attrib['y']) | |
points[pt_type] = (x, y) | |
return points | |
# ---------------- Fit-to-Box Helper ---------------- | |
def fit_to_box(img, target_h=600, target_w=600): | |
h, w = img.shape[:2] | |
scale = min(target_w/w, target_h/h) # preserve aspect ratio | |
new_w, new_h = int(w*scale), int(h*scale) | |
resized = cv2.resize(img, (new_w, new_h)) | |
# symmetric padding | |
top = (target_h - new_h) // 2 | |
bottom = target_h - new_h - top | |
left = (target_w - new_w) // 2 | |
right = target_w - new_w - left | |
canvas = np.ones((target_h, target_w, 3), dtype=np.uint8) * 255 | |
canvas[top:top+new_h, left:left+new_w] = resized | |
return canvas | |
# ---------------- Add Heading on Top ---------------- | |
def add_heading(img, text): | |
h, w = img.shape[:2] | |
band_h = 40 | |
canvas = np.ones((h+band_h, w, 3), dtype=np.uint8) * 255 | |
canvas[band_h:] = img | |
cv2.putText(canvas, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,0), 2, cv2.LINE_AA) | |
return canvas | |
# ---------------- Placeholder if matching fails ---------------- | |
def get_placeholder(method): | |
canvas = np.ones((600, 1800, 3), dtype=np.uint8) * 255 | |
cv2.putText(canvas, f"{method}: Not enough feature matching", (50, 300), | |
cv2.FONT_HERSHEY_SIMPLEX, 2, (0,0,255), 3, cv2.LINE_AA) | |
return canvas | |
# ---------------- Main Function ---------------- | |
def homography_all_detectors(flat_file, persp_file, json_file, xml_file): | |
flat_img = cv2.imread(flat_file) | |
persp_img = cv2.imread(persp_file) | |
mockup = json.load(open(json_file.name)) | |
roi_data = mockup["printAreas"][0]["position"] | |
roi_x, roi_y = roi_data["x"], roi_data["y"] | |
roi_w, roi_h = mockup["printAreas"][0]["width"], mockup["printAreas"][0]["height"] | |
roi_rot_deg = mockup["printAreas"][0]["rotation"] | |
flat_gray = preprocess_gray_clahe(flat_img) | |
persp_gray = preprocess_gray_clahe(persp_img) | |
xml_points = parse_xml_points(xml_file.name) | |
methods = ["SIFT","ORB","BRISK","KAZE","AKAZE"] | |
gallery_paths = [] | |
download_files = [] | |
for method in methods: | |
kp1,kp2,good_matches = detect_and_match(flat_gray,persp_gray,method) | |
if kp1 is None or kp2 is None or len(good_matches)<4: | |
placeholder = get_placeholder(method) | |
fname = f"{method.lower()}_placeholder.png" | |
cv2.imwrite(fname, placeholder) | |
gallery_paths.append(fname) | |
download_files.append(fname) | |
continue | |
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1,1,2) | |
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1,1,2) | |
H,_ = cv2.findHomography(src_pts,dst_pts,cv2.RANSAC,5.0) | |
if H is None: | |
placeholder = get_placeholder(method) | |
fname = f"{method.lower()}_placeholder.png" | |
cv2.imwrite(fname, placeholder) | |
gallery_paths.append(fname) | |
download_files.append(fname) | |
continue | |
# 1. Flat image with ROI (from JSON) | |
flat_with_roi = flat_img.copy() | |
roi_corners_flat = get_rotated_rect_corners(roi_x,roi_y,roi_w,roi_h,roi_rot_deg) | |
cv2.polylines(flat_with_roi,[roi_corners_flat.astype(int)],True,(0,255,0),2) | |
for px,py in roi_corners_flat: | |
cv2.circle(flat_with_roi,(int(px),int(py)),5,(255,0,0),-1) | |
# 2. Perspective with Homography ROI | |
roi_corners_persp = cv2.perspectiveTransform(roi_corners_flat.reshape(-1,1,2),H).reshape(-1,2) | |
persp_roi = persp_img.copy() | |
cv2.polylines(persp_roi,[roi_corners_persp.astype(int)],True,(0,255,0),5) | |
for px,py in roi_corners_persp: | |
cv2.circle(persp_roi,(int(px),int(py)),5,(255,0,0),5) | |
# 3. Perspective with GT ROI (from XML) | |
xml_gt_img = persp_img.copy() | |
ordered_pts = ['TopLeft', 'TopRight', 'BottomRight', 'BottomLeft'] | |
xml_polygon = [xml_points[pt] for pt in ordered_pts] | |
pts = np.array(xml_polygon, np.int32).reshape((-1,1,2)) | |
cv2.polylines(xml_gt_img,[pts],isClosed=True,color=(255,0,0),thickness=5) | |
# Convert to RGB + resize + add headings | |
flat_rgb = add_heading(fit_to_box(cv2.cvtColor(flat_with_roi,cv2.COLOR_BGR2RGB),600,600), "Flat Image with ROI") | |
roi_rgb = add_heading(fit_to_box(cv2.cvtColor(persp_roi,cv2.COLOR_BGR2RGB),600,600), "Perspective Homography ROI") | |
xml_rgb = add_heading(fit_to_box(cv2.cvtColor(xml_gt_img,cv2.COLOR_BGR2RGB),600,600), " Perspective GT ROI") | |
# Concatenate side by side | |
combined_row = np.hstack([flat_rgb, roi_rgb, xml_rgb]) | |
base_name = os.path.splitext(os.path.basename(persp_file))[0] | |
file_name = f"{base_name}_{method.lower()}.png" | |
cv2.imwrite(file_name, cv2.cvtColor(combined_row,cv2.COLOR_RGB2BGR)) | |
gallery_paths.append(file_name) | |
download_files.append(file_name) | |
while len(download_files)<5: | |
download_files.append(None) | |
return gallery_paths, download_files[0], download_files[1], download_files[2], download_files[3], download_files[4] | |
# ---------------- Gradio UI ---------------- | |
iface = gr.Interface( | |
fn=homography_all_detectors, | |
inputs=[ | |
gr.Image(label="Upload Flat Image",type="filepath"), | |
gr.Image(label="Upload Perspective Image",type="filepath"), | |
gr.File(label="Upload mockup.json",file_types=[".json"]), | |
gr.File(label="Upload XML file",file_types=[".xml"]) | |
], | |
outputs=[ | |
gr.Gallery(label="Results per Detector",show_label=True), | |
gr.File(label="Download SIFT Result"), | |
gr.File(label="Download ORB Result"), | |
gr.File(label="Download BRISK Result"), | |
gr.File(label="Download KAZE Result"), | |
gr.File(label="Download AKAZE Result") | |
], | |
title="Homography ROI + XML GT", | |
description="Flat with ROI + Perspective ROI (Homography + GT). Aspect ratio preserved, images centered in uniform boxes, headings added." | |
) | |
iface.launch() | |