Ayesha352's picture
Update app.py
25b3cb1 verified
import cv2
import numpy as np
import json
import gradio as gr
import os
import xml.etree.ElementTree as ET
# ---------------- Helper functions ----------------
def get_rotated_rect_corners(x, y, w, h, rotation_deg):
rot_rad = np.deg2rad(rotation_deg)
cos_r, sin_r = np.cos(rot_rad), np.sin(rot_rad)
R = np.array([[cos_r, -sin_r], [sin_r, cos_r]])
cx, cy = x + w/2, y + h/2
local_corners = np.array([[-w/2,-h/2],[w/2,-h/2],[w/2,h/2],[-w/2,h/2]])
rotated_corners = np.dot(local_corners, R.T)
return (rotated_corners + np.array([cx,cy])).astype(np.float32)
def preprocess_gray_clahe(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
return clahe.apply(gray)
def detect_and_match(img1_gray, img2_gray, method="SIFT", ratio_thresh=0.78):
if method=="SIFT":
detector=cv2.SIFT_create(nfeatures=5000); matcher=cv2.BFMatcher(cv2.NORM_L2)
elif method=="ORB":
detector=cv2.ORB_create(5000); matcher=cv2.BFMatcher(cv2.NORM_HAMMING)
elif method=="BRISK":
detector=cv2.BRISK_create(); matcher=cv2.BFMatcher(cv2.NORM_HAMMING)
elif method=="KAZE":
detector=cv2.KAZE_create(); matcher=cv2.BFMatcher(cv2.NORM_L2)
elif method=="AKAZE":
detector=cv2.AKAZE_create(); matcher=cv2.BFMatcher(cv2.NORM_HAMMING)
else:
return None,None,[]
kp1, des1 = detector.detectAndCompute(img1_gray,None)
kp2, des2 = detector.detectAndCompute(img2_gray,None)
if des1 is None or des2 is None:
return None,None,[]
raw_matches = matcher.knnMatch(des1,des2,k=2)
good = [m for m,n in raw_matches if m.distance < ratio_thresh*n.distance]
return kp1, kp2, good
def parse_xml_points(xml_file):
tree = ET.parse(xml_file)
root = tree.getroot()
transform = root.find('.//transform')
points = {}
for pt in transform.findall('.//point'):
pt_type = pt.attrib['type']
x = float(pt.attrib['x'])
y = float(pt.attrib['y'])
points[pt_type] = (x, y)
return points
# ---------------- Fit-to-Box Helper ----------------
def fit_to_box(img, target_h=600, target_w=600):
h, w = img.shape[:2]
scale = min(target_w/w, target_h/h) # preserve aspect ratio
new_w, new_h = int(w*scale), int(h*scale)
resized = cv2.resize(img, (new_w, new_h))
# symmetric padding
top = (target_h - new_h) // 2
bottom = target_h - new_h - top
left = (target_w - new_w) // 2
right = target_w - new_w - left
canvas = np.ones((target_h, target_w, 3), dtype=np.uint8) * 255
canvas[top:top+new_h, left:left+new_w] = resized
return canvas
# ---------------- Add Heading on Top ----------------
def add_heading(img, text):
h, w = img.shape[:2]
band_h = 40
canvas = np.ones((h+band_h, w, 3), dtype=np.uint8) * 255
canvas[band_h:] = img
cv2.putText(canvas, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,0), 2, cv2.LINE_AA)
return canvas
# ---------------- Placeholder if matching fails ----------------
def get_placeholder(method):
canvas = np.ones((600, 1800, 3), dtype=np.uint8) * 255
cv2.putText(canvas, f"{method}: Not enough feature matching", (50, 300),
cv2.FONT_HERSHEY_SIMPLEX, 2, (0,0,255), 3, cv2.LINE_AA)
return canvas
# ---------------- Main Function ----------------
def homography_all_detectors(flat_file, persp_file, json_file, xml_file):
flat_img = cv2.imread(flat_file)
persp_img = cv2.imread(persp_file)
mockup = json.load(open(json_file.name))
roi_data = mockup["printAreas"][0]["position"]
roi_x, roi_y = roi_data["x"], roi_data["y"]
roi_w, roi_h = mockup["printAreas"][0]["width"], mockup["printAreas"][0]["height"]
roi_rot_deg = mockup["printAreas"][0]["rotation"]
flat_gray = preprocess_gray_clahe(flat_img)
persp_gray = preprocess_gray_clahe(persp_img)
xml_points = parse_xml_points(xml_file.name)
methods = ["SIFT","ORB","BRISK","KAZE","AKAZE"]
gallery_paths = []
download_files = []
for method in methods:
kp1,kp2,good_matches = detect_and_match(flat_gray,persp_gray,method)
if kp1 is None or kp2 is None or len(good_matches)<4:
placeholder = get_placeholder(method)
fname = f"{method.lower()}_placeholder.png"
cv2.imwrite(fname, placeholder)
gallery_paths.append(fname)
download_files.append(fname)
continue
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1,1,2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1,1,2)
H,_ = cv2.findHomography(src_pts,dst_pts,cv2.RANSAC,5.0)
if H is None:
placeholder = get_placeholder(method)
fname = f"{method.lower()}_placeholder.png"
cv2.imwrite(fname, placeholder)
gallery_paths.append(fname)
download_files.append(fname)
continue
# 1. Flat image with ROI (from JSON)
flat_with_roi = flat_img.copy()
roi_corners_flat = get_rotated_rect_corners(roi_x,roi_y,roi_w,roi_h,roi_rot_deg)
cv2.polylines(flat_with_roi,[roi_corners_flat.astype(int)],True,(0,255,0),2)
for px,py in roi_corners_flat:
cv2.circle(flat_with_roi,(int(px),int(py)),5,(255,0,0),-1)
# 2. Perspective with Homography ROI
roi_corners_persp = cv2.perspectiveTransform(roi_corners_flat.reshape(-1,1,2),H).reshape(-1,2)
persp_roi = persp_img.copy()
cv2.polylines(persp_roi,[roi_corners_persp.astype(int)],True,(0,255,0),5)
for px,py in roi_corners_persp:
cv2.circle(persp_roi,(int(px),int(py)),5,(255,0,0),5)
# 3. Perspective with GT ROI (from XML)
xml_gt_img = persp_img.copy()
ordered_pts = ['TopLeft', 'TopRight', 'BottomRight', 'BottomLeft']
xml_polygon = [xml_points[pt] for pt in ordered_pts]
pts = np.array(xml_polygon, np.int32).reshape((-1,1,2))
cv2.polylines(xml_gt_img,[pts],isClosed=True,color=(255,0,0),thickness=5)
# Convert to RGB + resize + add headings
flat_rgb = add_heading(fit_to_box(cv2.cvtColor(flat_with_roi,cv2.COLOR_BGR2RGB),600,600), "Flat Image with ROI")
roi_rgb = add_heading(fit_to_box(cv2.cvtColor(persp_roi,cv2.COLOR_BGR2RGB),600,600), "Perspective Homography ROI")
xml_rgb = add_heading(fit_to_box(cv2.cvtColor(xml_gt_img,cv2.COLOR_BGR2RGB),600,600), " Perspective GT ROI")
# Concatenate side by side
combined_row = np.hstack([flat_rgb, roi_rgb, xml_rgb])
base_name = os.path.splitext(os.path.basename(persp_file))[0]
file_name = f"{base_name}_{method.lower()}.png"
cv2.imwrite(file_name, cv2.cvtColor(combined_row,cv2.COLOR_RGB2BGR))
gallery_paths.append(file_name)
download_files.append(file_name)
while len(download_files)<5:
download_files.append(None)
return gallery_paths, download_files[0], download_files[1], download_files[2], download_files[3], download_files[4]
# ---------------- Gradio UI ----------------
iface = gr.Interface(
fn=homography_all_detectors,
inputs=[
gr.Image(label="Upload Flat Image",type="filepath"),
gr.Image(label="Upload Perspective Image",type="filepath"),
gr.File(label="Upload mockup.json",file_types=[".json"]),
gr.File(label="Upload XML file",file_types=[".xml"])
],
outputs=[
gr.Gallery(label="Results per Detector",show_label=True),
gr.File(label="Download SIFT Result"),
gr.File(label="Download ORB Result"),
gr.File(label="Download BRISK Result"),
gr.File(label="Download KAZE Result"),
gr.File(label="Download AKAZE Result")
],
title="Homography ROI + XML GT",
description="Flat with ROI + Perspective ROI (Homography + GT). Aspect ratio preserved, images centered in uniform boxes, headings added."
)
iface.launch()