ML610's picture
Upload 515 files
1cf2abd
raw
history blame
15.4 kB
Metadata-Version: 2.1
Name: ctransformers
Version: 0.2.11
Summary: Python bindings for the Transformer models implemented in C/C++ using GGML library.
Home-page: https://github.com/marella/ctransformers
Author: Ravindra Marella
Author-email: mv.ravindra007@gmail.com
License: MIT
Keywords: ctransformers transformers ai llm
Classifier: Development Status :: 1 - Planning
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python :: 3
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Mathematics
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Software Development
Classifier: Topic :: Software Development :: Libraries
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Description-Content-Type: text/markdown
Provides-Extra: tests
License-File: LICENSE
# [C Transformers](https://github.com/marella/ctransformers) [![PyPI](https://img.shields.io/pypi/v/ctransformers)](https://pypi.org/project/ctransformers/) [![tests](https://github.com/marella/ctransformers/actions/workflows/tests.yml/badge.svg)](https://github.com/marella/ctransformers/actions/workflows/tests.yml) [![build](https://github.com/marella/ctransformers/actions/workflows/build.yml/badge.svg)](https://github.com/marella/ctransformers/actions/workflows/build.yml)
Python bindings for the Transformer models implemented in C/C++ using [GGML](https://github.com/ggerganov/ggml) library.
> Also see [ChatDocs](https://github.com/marella/chatdocs)
- [Supported Models](#supported-models)
- [Installation](#installation)
- [Usage](#usage)
- [Hugging Face Hub](#hugging-face-hub)
- [LangChain](#langchain)
- [GPU](#gpu)
- [Documentation](#documentation)
- [License](#license)
## Supported Models
| Models | Model Type |
| :-------------------- | ----------- |
| GPT-2 | `gpt2` |
| GPT-J, GPT4All-J | `gptj` |
| GPT-NeoX, StableLM | `gpt_neox` |
| LLaMA | `llama` |
| MPT | `mpt` |
| Dolly V2 | `dolly-v2` |
| StarCoder, StarChat | `starcoder` |
| Falcon (Experimental) | `falcon` |
## Installation
```sh
pip install ctransformers
```
For GPU (CUDA) support, set environment variable `CT_CUBLAS=1` and install from source using:
```sh
CT_CUBLAS=1 pip install ctransformers --no-binary ctransformers
```
<details>
<summary><strong>Show commands for Windows</strong></summary><br>
On Windows PowerShell run:
```sh
$env:CT_CUBLAS=1
pip install ctransformers --no-binary ctransformers
```
On Windows Command Prompt run:
```sh
set CT_CUBLAS=1
pip install ctransformers --no-binary ctransformers
```
</details>
## Usage
It provides a unified interface for all models:
```py
from ctransformers import AutoModelForCausalLM
llm = AutoModelForCausalLM.from_pretrained('/path/to/ggml-gpt-2.bin', model_type='gpt2')
print(llm('AI is going to'))
```
[Run in Google Colab](https://colab.research.google.com/drive/1GMhYMUAv_TyZkpfvUI1NirM8-9mCXQyL)
If you are getting `illegal instruction` error, try using `lib='avx'` or `lib='basic'`:
```py
llm = AutoModelForCausalLM.from_pretrained('/path/to/ggml-gpt-2.bin', model_type='gpt2', lib='avx')
```
It provides a generator interface for more control:
```py
tokens = llm.tokenize('AI is going to')
for token in llm.generate(tokens):
print(llm.detokenize(token))
```
It can be used with a custom or Hugging Face tokenizer:
```py
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('gpt2')
tokens = tokenizer.encode('AI is going to')
for token in llm.generate(tokens):
print(tokenizer.decode(token))
```
It also provides access to the low-level C API. See [Documentation](#documentation) section below.
### Hugging Face Hub
It can be used with models hosted on the Hub:
```py
llm = AutoModelForCausalLM.from_pretrained('marella/gpt-2-ggml')
```
If a model repo has multiple model files (`.bin` files), specify a model file using:
```py
llm = AutoModelForCausalLM.from_pretrained('marella/gpt-2-ggml', model_file='ggml-model.bin')
```
It can be used with your own models uploaded on the Hub. For better user experience, upload only one model per repo.
To use it with your own model, add `config.json` file to your model repo specifying the `model_type`:
```json
{
"model_type": "gpt2"
}
```
You can also specify additional parameters under `task_specific_params.text-generation`.
See [marella/gpt-2-ggml](https://huggingface.co/marella/gpt-2-ggml/blob/main/config.json) for a minimal example and [marella/gpt-2-ggml-example](https://huggingface.co/marella/gpt-2-ggml-example/blob/main/config.json) for a full example.
### LangChain
It is integrated into LangChain. See [LangChain docs](https://python.langchain.com/docs/ecosystem/integrations/ctransformers).
### GPU
> **Note:** Currently only LLaMA models have GPU support.
To run some of the model layers on GPU, set the `gpu_layers` parameter:
```py
llm = AutoModelForCausalLM.from_pretrained('/path/to/ggml-llama.bin', model_type='llama', gpu_layers=50)
```
[Run in Google Colab](https://colab.research.google.com/drive/1Ihn7iPCYiqlTotpkqa1tOhUIpJBrJ1Tp)
## Documentation
<!-- API_DOCS -->
### Config
| Parameter | Type | Description | Default |
| :------------------- | :---------- | :------------------------------------------------------- | :------ |
| `top_k` | `int` | The top-k value to use for sampling. | `40` |
| `top_p` | `float` | The top-p value to use for sampling. | `0.95` |
| `temperature` | `float` | The temperature to use for sampling. | `0.8` |
| `repetition_penalty` | `float` | The repetition penalty to use for sampling. | `1.1` |
| `last_n_tokens` | `int` | The number of last tokens to use for repetition penalty. | `64` |
| `seed` | `int` | The seed value to use for sampling tokens. | `-1` |
| `max_new_tokens` | `int` | The maximum number of new tokens to generate. | `256` |
| `stop` | `List[str]` | A list of sequences to stop generation when encountered. | `None` |
| `stream` | `bool` | Whether to stream the generated text. | `False` |
| `reset` | `bool` | Whether to reset the model state before generating text. | `True` |
| `batch_size` | `int` | The batch size to use for evaluating tokens. | `8` |
| `threads` | `int` | The number of threads to use for evaluating tokens. | `-1` |
| `context_length` | `int` | The maximum context length to use. | `-1` |
| `gpu_layers` | `int` | The number of layers to run on GPU. | `0` |
> **Note:** Currently only LLaMA and MPT models support the `context_length` parameter and only LLaMA models support the `gpu_layers` parameter.
### <kbd>class</kbd> `AutoModelForCausalLM`
---
#### <kbd>classmethod</kbd> `AutoModelForCausalLM.from_pretrained`
```python
from_pretrained(
model_path_or_repo_id: str,
model_type: Optional[str] = None,
model_file: Optional[str] = None,
config: Optional[ctransformers.hub.AutoConfig] = None,
lib: Optional[str] = None,
local_files_only: bool = False,
**kwargs
) → LLM
```
Loads the language model from a local file or remote repo.
**Args:**
- <b>`model_path_or_repo_id`</b>: The path to a model file or directory or the name of a Hugging Face Hub model repo.
- <b>`model_type`</b>: The model type.
- <b>`model_file`</b>: The name of the model file in repo or directory.
- <b>`config`</b>: `AutoConfig` object.
- <b>`lib`</b>: The path to a shared library or one of `avx2`, `avx`, `basic`.
- <b>`local_files_only`</b>: Whether or not to only look at local files (i.e., do not try to download the model).
**Returns:**
`LLM` object.
### <kbd>class</kbd> `LLM`
### <kbd>method</kbd> `LLM.__init__`
```python
__init__(
model_path: str,
model_type: str,
config: Optional[ctransformers.llm.Config] = None,
lib: Optional[str] = None
)
```
Loads the language model from a local file.
**Args:**
- <b>`model_path`</b>: The path to a model file.
- <b>`model_type`</b>: The model type.
- <b>`config`</b>: `Config` object.
- <b>`lib`</b>: The path to a shared library or one of `avx2`, `avx`, `basic`.
---
##### <kbd>property</kbd> LLM.config
The config object.
---
##### <kbd>property</kbd> LLM.context_length
The context length of model.
---
##### <kbd>property</kbd> LLM.embeddings
The input embeddings.
---
##### <kbd>property</kbd> LLM.eos_token_id
The end-of-sequence token.
---
##### <kbd>property</kbd> LLM.logits
The unnormalized log probabilities.
---
##### <kbd>property</kbd> LLM.model_path
The path to the model file.
---
##### <kbd>property</kbd> LLM.model_type
The model type.
---
##### <kbd>property</kbd> LLM.vocab_size
The number of tokens in vocabulary.
---
#### <kbd>method</kbd> `LLM.detokenize`
```python
detokenize(tokens: Sequence[int], decode: bool = True) → Union[str, bytes]
```
Converts a list of tokens to text.
**Args:**
- <b>`tokens`</b>: The list of tokens.
- <b>`decode`</b>: Whether to decode the text as UTF-8 string.
**Returns:**
The combined text of all tokens.
---
#### <kbd>method</kbd> `LLM.embed`
```python
embed(
input: Union[str, Sequence[int]],
batch_size: Optional[int] = None,
threads: Optional[int] = None
) → List[float]
```
Computes embeddings for a text or list of tokens.
> **Note:** Currently only LLaMA models support embeddings.
**Args:**
- <b>`input`</b>: The input text or list of tokens to get embeddings for.
- <b>`batch_size`</b>: The batch size to use for evaluating tokens. Default: `8`
- <b>`threads`</b>: The number of threads to use for evaluating tokens. Default: `-1`
**Returns:**
The input embeddings.
---
#### <kbd>method</kbd> `LLM.eval`
```python
eval(
tokens: Sequence[int],
batch_size: Optional[int] = None,
threads: Optional[int] = None
) → None
```
Evaluates a list of tokens.
**Args:**
- <b>`tokens`</b>: The list of tokens to evaluate.
- <b>`batch_size`</b>: The batch size to use for evaluating tokens. Default: `8`
- <b>`threads`</b>: The number of threads to use for evaluating tokens. Default: `-1`
---
#### <kbd>method</kbd> `LLM.generate`
```python
generate(
tokens: Sequence[int],
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
reset: Optional[bool] = None
) → Generator[int, NoneType, NoneType]
```
Generates new tokens from a list of tokens.
**Args:**
- <b>`tokens`</b>: The list of tokens to generate tokens from.
- <b>`top_k`</b>: The top-k value to use for sampling. Default: `40`
- <b>`top_p`</b>: The top-p value to use for sampling. Default: `0.95`
- <b>`temperature`</b>: The temperature to use for sampling. Default: `0.8`
- <b>`repetition_penalty`</b>: The repetition penalty to use for sampling. Default: `1.1`
- <b>`last_n_tokens`</b>: The number of last tokens to use for repetition penalty. Default: `64`
- <b>`seed`</b>: The seed value to use for sampling tokens. Default: `-1`
- <b>`batch_size`</b>: The batch size to use for evaluating tokens. Default: `8`
- <b>`threads`</b>: The number of threads to use for evaluating tokens. Default: `-1`
- <b>`reset`</b>: Whether to reset the model state before generating text. Default: `True`
**Returns:**
The generated tokens.
---
#### <kbd>method</kbd> `LLM.is_eos_token`
```python
is_eos_token(token: int) → bool
```
Checks if a token is an end-of-sequence token.
**Args:**
- <b>`token`</b>: The token to check.
**Returns:**
`True` if the token is an end-of-sequence token else `False`.
---
#### <kbd>method</kbd> `LLM.reset`
```python
reset() → None
```
Resets the model state.
---
#### <kbd>method</kbd> `LLM.sample`
```python
sample(
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None
) → int
```
Samples a token from the model.
**Args:**
- <b>`top_k`</b>: The top-k value to use for sampling. Default: `40`
- <b>`top_p`</b>: The top-p value to use for sampling. Default: `0.95`
- <b>`temperature`</b>: The temperature to use for sampling. Default: `0.8`
- <b>`repetition_penalty`</b>: The repetition penalty to use for sampling. Default: `1.1`
- <b>`last_n_tokens`</b>: The number of last tokens to use for repetition penalty. Default: `64`
- <b>`seed`</b>: The seed value to use for sampling tokens. Default: `-1`
**Returns:**
The sampled token.
---
#### <kbd>method</kbd> `LLM.tokenize`
```python
tokenize(text: str) → List[int]
```
Converts a text into list of tokens.
**Args:**
- <b>`text`</b>: The text to tokenize.
**Returns:**
The list of tokens.
---
#### <kbd>method</kbd> `LLM.__call__`
```python
__call__(
prompt: str,
max_new_tokens: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
stop: Optional[Sequence[str]] = None,
stream: Optional[bool] = None,
reset: Optional[bool] = None
) → Union[str, Generator[str, NoneType, NoneType]]
```
Generates text from a prompt.
**Args:**
- <b>`prompt`</b>: The prompt to generate text from.
- <b>`max_new_tokens`</b>: The maximum number of new tokens to generate. Default: `256`
- <b>`top_k`</b>: The top-k value to use for sampling. Default: `40`
- <b>`top_p`</b>: The top-p value to use for sampling. Default: `0.95`
- <b>`temperature`</b>: The temperature to use for sampling. Default: `0.8`
- <b>`repetition_penalty`</b>: The repetition penalty to use for sampling. Default: `1.1`
- <b>`last_n_tokens`</b>: The number of last tokens to use for repetition penalty. Default: `64`
- <b>`seed`</b>: The seed value to use for sampling tokens. Default: `-1`
- <b>`batch_size`</b>: The batch size to use for evaluating tokens. Default: `8`
- <b>`threads`</b>: The number of threads to use for evaluating tokens. Default: `-1`
- <b>`stop`</b>: A list of sequences to stop generation when encountered. Default: `None`
- <b>`stream`</b>: Whether to stream the generated text. Default: `False`
- <b>`reset`</b>: Whether to reset the model state before generating text. Default: `True`
**Returns:**
The generated text.
<!-- API_DOCS -->
## License
[MIT](https://github.com/marella/ctransformers/blob/main/LICENSE)