Instance-Shadow-Removal / diffusion.py
MKFMIKU's picture
add codes
db8145f
import inspect
from tkinter import Image
from typing import List, Optional, Union
import numpy as np
import torch
import PIL
from PIL import Image
from tqdm.auto import tqdm
from diffusion_arch import DensePosteriorConditionalUNet
from guided_diffusion.script_util import create_gaussian_diffusion
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from einops import rearrange
from kornia.morphology import dilation
from tqdm import tqdm
def preprocess_image(image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image.transpose(2,0,1)).unsqueeze(0)
return 2.0 * image - 1.0
def preprocess_mask(mask):
mask = mask.convert("L")
w, h = mask.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
mask = mask.resize((w, h), resample=PIL.Image.NEAREST)
mask = np.array(mask).astype(np.float32) / 255.0
mask = torch.from_numpy(np.repeat(mask[None, ...], 3, axis=0)).unsqueeze(0)
mask[mask > 0] = 1
return mask
class DiffusionPipeline():
def __init__(self, device):
super().__init__()
self.device = device
self.model = DensePosteriorConditionalUNet(
in_channels=9,
model_channels=256,
out_channels=6,
num_res_blocks=2,
attention_resolutions=[8, 16, 32],
dropout=0.0,
channel_mult=(1, 1, 2, 2, 4, 4),
num_classes=None,
use_checkpoint=False,
use_fp16=False,
num_heads=4,
num_head_channels=64,
num_heads_upsample=-1,
use_scale_shift_norm=True,
resblock_updown=True,
use_new_attention_order=True
)
self.model.eval()
self.model.to(self.device)
self.model.load_state_dict(torch.load('net_g_400000.pth', map_location='cpu')["params_ema"], strict=True)
@torch.no_grad()
def __call__(self, lq, mask, dkernel, diffusion_step):
self.eval_gaussian_diffusion = create_gaussian_diffusion(
steps=1000,
learn_sigma=True,
noise_schedule='linear',
use_kl=False,
timestep_respacing="ddim" + str(diffusion_step),
predict_xstart=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
p2_gamma=1,
p2_k=1,
)
ow, oh = lq.size
# preprocess image
lq = preprocess_image(lq).to(self.device)
# preprocess mask
mask = preprocess_mask(mask).to(self.device)
mask = dilation(mask, torch.ones(dkernel, dkernel, device=self.device))
# return Image.fromarray(np.uint8(torch.cat(((lq / 2 + 0.5).clamp(0, 1), mask), dim=2).cpu().permute(0, 2, 3, 1).numpy()[0] * 255.))
#======== PADDING FORWARDING ============
stride = 64
kernel_size = 256
_, _, h, w = mask.shape
mask = F.unfold(mask, kernel_size=kernel_size, stride=stride)
lq = F.unfold(lq, kernel_size=kernel_size, stride=stride)
n, c, l = mask.shape
mask = rearrange(mask, 'n (c3 h w) l -> (n l) c3 h w', h=kernel_size, w=kernel_size)
lq = rearrange(lq, 'n (c3 h w) l -> (n l) c3 h w', h=kernel_size, w=kernel_size)
#======== PADDING END ============
#======== FORWARDING ============
sub_imgs = []
for (sub_lq, sub_mask) in zip(lq.unsqueeze(1), mask.unsqueeze(1)):
if torch.sum(sub_mask) > 1:
img = torch.randn_like(sub_lq, device=self.device)
indices = list(range(self.eval_gaussian_diffusion.num_timesteps))[::-1]
for i in indices:
t = torch.tensor([i] * img.size(0), device=self.device)
img = img * sub_mask + self.eval_gaussian_diffusion.q_sample(sub_lq, t) * (1 - sub_mask)
out = self.eval_gaussian_diffusion.p_mean_variance(self.model, img.contiguous(), t, model_kwargs={'latent': torch.cat((sub_lq, sub_mask), dim=1)})
nonzero_mask = (
(t != 0).float().view(-1, *([1] * (len(img.shape) - 1)))
) # no noise when t == 0
img = out["mean"] + nonzero_mask * torch.exp(0.5 * out["log_variance"]) * torch.randn_like(img, device=self.device)
sub_imgs.append(img)
else:
sub_imgs.append(sub_lq)
img = torch.cat(sub_imgs, dim=0)
#======== PADDING BACKWARDING ============
img = rearrange(img, '(n l) c3 h w -> n (c3 h w) l', h=kernel_size, w=kernel_size, l=l)
img = F.fold(img, (h, w), kernel_size=kernel_size, stride=stride)
norm_map = F.fold(F.unfold(torch.ones_like(img), kernel_size, stride=stride), (h, w), kernel_size, stride=stride)
img /= norm_map
img = (img / 2 + 0.5).clamp(0, 1)
img = img.cpu().permute(0, 2, 3, 1).numpy()[0]
img = Image.fromarray(np.uint8(img * 255.))
img = img.resize((ow, oh), resample=PIL.Image.LANCZOS)
return img
@torch.no_grad()
def quick_solve(self, lq, mask, dkernel, diffusion_step):
self.eval_gaussian_diffusion = create_gaussian_diffusion(
steps=1000,
learn_sigma=True,
noise_schedule='linear',
use_kl=False,
timestep_respacing="ddim" + str(diffusion_step),
predict_xstart=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
p2_gamma=1,
p2_k=1,
)
ow, oh = lq.size
lq = lq.resize((512, 512), resample=Image.LANCZOS)
mask = mask.resize((512, 512), resample=Image.NEAREST)
# preprocess image
lq = preprocess_image(lq).to(self.device)
# preprocess mask
mask = preprocess_mask(mask).to(self.device)
mask = dilation(mask, torch.ones(dkernel, dkernel, device=self.device))
# return Image.fromarray(np.uint8(torch.cat(((lq / 2 + 0.5).clamp(0, 1), mask), dim=2).cpu().permute(0, 2, 3, 1).numpy()[0] * 255.))
img = torch.randn_like(lq, device=self.device)
indices = list(range(self.eval_gaussian_diffusion.num_timesteps))[::-1]
for i in indices:
t = torch.tensor([i] * img.size(0), device=self.device)
img = img * mask + self.eval_gaussian_diffusion.q_sample(lq, t) * (1 - mask)
out = self.eval_gaussian_diffusion.p_mean_variance(self.model, img.contiguous(), t, model_kwargs={'latent': torch.cat((lq, mask), dim=1)})
nonzero_mask = (
(t != 0).float().view(-1, *([1] * (len(img.shape) - 1)))
) # no noise when t == 0
img = out["mean"] + nonzero_mask * torch.exp(0.5 * out["log_variance"]) * torch.randn_like(img, device=self.device)
yield Image.fromarray(np.uint8((out["pred_xstart"] / 2 + 0.5).clamp(0, 1).cpu().permute(0, 2, 3, 1).numpy()[0] * 255.)).resize((ow, oh), resample=Image.LANCZOS)
yield Image.fromarray(np.uint8((img / 2 + 0.5).clamp(0, 1).cpu().permute(0, 2, 3, 1).numpy()[0] * 255.)).resize((ow, oh), resample=Image.LANCZOS)