MKFMIKU commited on
Commit
db8145f
1 Parent(s): 85ebe15
.DS_Store ADDED
Binary file (6.15 kB). View file
 
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
  title: InstanceShadow
3
- emoji: 💻
4
- colorFrom: green
5
  colorTo: gray
6
  sdk: gradio
7
- sdk_version: 4.7.1
8
  app_file: app.py
9
  pinned: false
10
  license: cc-by-4.0
 
1
  ---
2
  title: InstanceShadow
3
+ emoji: 🔥
4
+ colorFrom: red
5
  colorTo: gray
6
  sdk: gradio
7
+ sdk_version: 3.50.2
8
  app_file: app.py
9
  pinned: false
10
  license: cc-by-4.0
app.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from PIL import Image
4
+
5
+ import torch
6
+ from diffusion import DiffusionPipeline
7
+
8
+ device = "cuda" if torch.cuda.is_available() else "cpu"
9
+
10
+ pipe = DiffusionPipeline(device)
11
+
12
+ def read_content(file_path: str) -> str:
13
+ """read the content of target file
14
+ """
15
+ with open(file_path, 'r', encoding='utf-8') as f:
16
+ content = f.read()
17
+
18
+ return content
19
+
20
+ def predict(input, dkernel, diffusion_step, q=False):
21
+ lq = input["image"].convert("RGB")
22
+ mask = input["mask"].convert("RGB")
23
+ mask = mask.resize(lq.size, resample=Image.NEAREST)
24
+ output = pipe(lq=lq, mask=mask, dkernel=dkernel, diffusion_step=diffusion_step)
25
+ return output
26
+
27
+ def qpredict(input, dkernel, diffusion_step, q=False):
28
+ lq = input["image"].convert("RGB")
29
+ mask = input["mask"].convert("RGB")
30
+ mask = mask.resize(lq.size, resample=Image.NEAREST)
31
+ for output in pipe.quick_solve(lq=lq, mask=mask, dkernel=dkernel, diffusion_step=diffusion_step):
32
+ yield output
33
+
34
+
35
+ css = '''
36
+ .container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
37
+ #image_upload{min-height:400px}
38
+ #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
39
+ #mask_radio .gr-form{background:transparent; border: none}
40
+ #word_mask{margin-top: .75em !important}
41
+ #word_mask textarea:disabled{opacity: 0.3}
42
+ .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
43
+ .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
44
+ .dark .footer {border-color: #303030}
45
+ .dark .footer>p {background: #0b0f19}
46
+ .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
47
+ #image_upload .touch-none{display: flex}
48
+ @keyframes spin {
49
+ from {
50
+ transform: rotate(0deg);
51
+ }
52
+ to {
53
+ transform: rotate(360deg);
54
+ }
55
+ }
56
+ '''
57
+
58
+ image_blocks = gr.Blocks(css=css)
59
+ with image_blocks as demo:
60
+ gr.HTML(read_content("header.html"))
61
+ with gr.Group():
62
+ with gr.Box():
63
+ with gr.Row():
64
+ with gr.Column():
65
+ image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Shadow Image").style(height=400)
66
+ dkernel = gr.Slider(minimum=11, maximum=55, step=2, value=25, label="Dilation Kernel Size")
67
+ diffusion_step = gr.Slider(minimum=10, maximum=200, step=5, value=50, label="Diffusion Time Step")
68
+ with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
69
+ with gr.Column():
70
+ btn = gr.Button("Removal").style(
71
+ margin=False,
72
+ full_width=True,
73
+ )
74
+ with gr.Column():
75
+ qbtn = gr.Button("Quick Removal").style(
76
+ margin=False,
77
+ full_width=True,
78
+ )
79
+
80
+ with gr.Column():
81
+ image_out = gr.Image(label="Removal Result", elem_id="output-img").style(height=400)
82
+ with gr.Row():
83
+ gr.Examples(examples=[
84
+ 'examples/web-shadow0243.jpg',
85
+ 'examples/web-shadow0248.jpg',
86
+ 'examples/lssd2025.jpg'
87
+ ], inputs=[image])
88
+
89
+ btn.click(fn=predict, inputs=[image, dkernel, diffusion_step], outputs=[image_out])
90
+ qbtn.click(fn=qpredict, inputs=[image, dkernel, diffusion_step], outputs=[image_out])
91
+
92
+ image_blocks.launch(enable_queue=True, share=False, debug=False, server_port=10011)
diffusion.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ from tkinter import Image
3
+ from typing import List, Optional, Union
4
+
5
+ import numpy as np
6
+ import torch
7
+
8
+ import PIL
9
+ from PIL import Image
10
+ from tqdm.auto import tqdm
11
+
12
+ from diffusion_arch import DensePosteriorConditionalUNet
13
+ from guided_diffusion.script_util import create_gaussian_diffusion
14
+
15
+ import torch.nn.functional as F
16
+ import torchvision.transforms.functional as TF
17
+
18
+ from einops import rearrange
19
+ from kornia.morphology import dilation
20
+
21
+ from tqdm import tqdm
22
+
23
+ def preprocess_image(image):
24
+ w, h = image.size
25
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
26
+ image = image.resize((w, h), resample=PIL.Image.LANCZOS)
27
+ image = np.array(image).astype(np.float32) / 255.0
28
+ image = torch.from_numpy(image.transpose(2,0,1)).unsqueeze(0)
29
+ return 2.0 * image - 1.0
30
+
31
+ def preprocess_mask(mask):
32
+ mask = mask.convert("L")
33
+ w, h = mask.size
34
+ w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
35
+ mask = mask.resize((w, h), resample=PIL.Image.NEAREST)
36
+ mask = np.array(mask).astype(np.float32) / 255.0
37
+ mask = torch.from_numpy(np.repeat(mask[None, ...], 3, axis=0)).unsqueeze(0)
38
+ mask[mask > 0] = 1
39
+ return mask
40
+
41
+
42
+ class DiffusionPipeline():
43
+ def __init__(self, device):
44
+ super().__init__()
45
+ self.device = device
46
+ self.model = DensePosteriorConditionalUNet(
47
+ in_channels=9,
48
+ model_channels=256,
49
+ out_channels=6,
50
+ num_res_blocks=2,
51
+ attention_resolutions=[8, 16, 32],
52
+ dropout=0.0,
53
+ channel_mult=(1, 1, 2, 2, 4, 4),
54
+ num_classes=None,
55
+ use_checkpoint=False,
56
+ use_fp16=False,
57
+ num_heads=4,
58
+ num_head_channels=64,
59
+ num_heads_upsample=-1,
60
+ use_scale_shift_norm=True,
61
+ resblock_updown=True,
62
+ use_new_attention_order=True
63
+ )
64
+ self.model.eval()
65
+ self.model.to(self.device)
66
+ self.model.load_state_dict(torch.load('net_g_400000.pth', map_location='cpu')["params_ema"], strict=True)
67
+
68
+
69
+ @torch.no_grad()
70
+ def __call__(self, lq, mask, dkernel, diffusion_step):
71
+ self.eval_gaussian_diffusion = create_gaussian_diffusion(
72
+ steps=1000,
73
+ learn_sigma=True,
74
+ noise_schedule='linear',
75
+ use_kl=False,
76
+ timestep_respacing="ddim" + str(diffusion_step),
77
+ predict_xstart=False,
78
+ rescale_timesteps=False,
79
+ rescale_learned_sigmas=False,
80
+ p2_gamma=1,
81
+ p2_k=1,
82
+ )
83
+
84
+ ow, oh = lq.size
85
+
86
+ # preprocess image
87
+ lq = preprocess_image(lq).to(self.device)
88
+
89
+ # preprocess mask
90
+ mask = preprocess_mask(mask).to(self.device)
91
+ mask = dilation(mask, torch.ones(dkernel, dkernel, device=self.device))
92
+
93
+ # return Image.fromarray(np.uint8(torch.cat(((lq / 2 + 0.5).clamp(0, 1), mask), dim=2).cpu().permute(0, 2, 3, 1).numpy()[0] * 255.))
94
+
95
+ #======== PADDING FORWARDING ============
96
+ stride = 64
97
+ kernel_size = 256
98
+
99
+ _, _, h, w = mask.shape
100
+ mask = F.unfold(mask, kernel_size=kernel_size, stride=stride)
101
+ lq = F.unfold(lq, kernel_size=kernel_size, stride=stride)
102
+
103
+ n, c, l = mask.shape
104
+ mask = rearrange(mask, 'n (c3 h w) l -> (n l) c3 h w', h=kernel_size, w=kernel_size)
105
+ lq = rearrange(lq, 'n (c3 h w) l -> (n l) c3 h w', h=kernel_size, w=kernel_size)
106
+
107
+ #======== PADDING END ============
108
+
109
+ #======== FORWARDING ============
110
+ sub_imgs = []
111
+ for (sub_lq, sub_mask) in zip(lq.unsqueeze(1), mask.unsqueeze(1)):
112
+ if torch.sum(sub_mask) > 1:
113
+ img = torch.randn_like(sub_lq, device=self.device)
114
+ indices = list(range(self.eval_gaussian_diffusion.num_timesteps))[::-1]
115
+ for i in indices:
116
+ t = torch.tensor([i] * img.size(0), device=self.device)
117
+ img = img * sub_mask + self.eval_gaussian_diffusion.q_sample(sub_lq, t) * (1 - sub_mask)
118
+ out = self.eval_gaussian_diffusion.p_mean_variance(self.model, img.contiguous(), t, model_kwargs={'latent': torch.cat((sub_lq, sub_mask), dim=1)})
119
+ nonzero_mask = (
120
+ (t != 0).float().view(-1, *([1] * (len(img.shape) - 1)))
121
+ ) # no noise when t == 0
122
+ img = out["mean"] + nonzero_mask * torch.exp(0.5 * out["log_variance"]) * torch.randn_like(img, device=self.device)
123
+ sub_imgs.append(img)
124
+ else:
125
+ sub_imgs.append(sub_lq)
126
+ img = torch.cat(sub_imgs, dim=0)
127
+
128
+ #======== PADDING BACKWARDING ============
129
+ img = rearrange(img, '(n l) c3 h w -> n (c3 h w) l', h=kernel_size, w=kernel_size, l=l)
130
+ img = F.fold(img, (h, w), kernel_size=kernel_size, stride=stride)
131
+ norm_map = F.fold(F.unfold(torch.ones_like(img), kernel_size, stride=stride), (h, w), kernel_size, stride=stride)
132
+ img /= norm_map
133
+
134
+ img = (img / 2 + 0.5).clamp(0, 1)
135
+ img = img.cpu().permute(0, 2, 3, 1).numpy()[0]
136
+ img = Image.fromarray(np.uint8(img * 255.))
137
+ img = img.resize((ow, oh), resample=PIL.Image.LANCZOS)
138
+
139
+ return img
140
+
141
+
142
+
143
+ @torch.no_grad()
144
+ def quick_solve(self, lq, mask, dkernel, diffusion_step):
145
+ self.eval_gaussian_diffusion = create_gaussian_diffusion(
146
+ steps=1000,
147
+ learn_sigma=True,
148
+ noise_schedule='linear',
149
+ use_kl=False,
150
+ timestep_respacing="ddim" + str(diffusion_step),
151
+ predict_xstart=False,
152
+ rescale_timesteps=False,
153
+ rescale_learned_sigmas=False,
154
+ p2_gamma=1,
155
+ p2_k=1,
156
+ )
157
+
158
+ ow, oh = lq.size
159
+
160
+ lq = lq.resize((512, 512), resample=Image.LANCZOS)
161
+ mask = mask.resize((512, 512), resample=Image.NEAREST)
162
+
163
+ # preprocess image
164
+ lq = preprocess_image(lq).to(self.device)
165
+
166
+ # preprocess mask
167
+ mask = preprocess_mask(mask).to(self.device)
168
+ mask = dilation(mask, torch.ones(dkernel, dkernel, device=self.device))
169
+
170
+ # return Image.fromarray(np.uint8(torch.cat(((lq / 2 + 0.5).clamp(0, 1), mask), dim=2).cpu().permute(0, 2, 3, 1).numpy()[0] * 255.))
171
+
172
+ img = torch.randn_like(lq, device=self.device)
173
+ indices = list(range(self.eval_gaussian_diffusion.num_timesteps))[::-1]
174
+ for i in indices:
175
+ t = torch.tensor([i] * img.size(0), device=self.device)
176
+ img = img * mask + self.eval_gaussian_diffusion.q_sample(lq, t) * (1 - mask)
177
+ out = self.eval_gaussian_diffusion.p_mean_variance(self.model, img.contiguous(), t, model_kwargs={'latent': torch.cat((lq, mask), dim=1)})
178
+ nonzero_mask = (
179
+ (t != 0).float().view(-1, *([1] * (len(img.shape) - 1)))
180
+ ) # no noise when t == 0
181
+ img = out["mean"] + nonzero_mask * torch.exp(0.5 * out["log_variance"]) * torch.randn_like(img, device=self.device)
182
+
183
+ yield Image.fromarray(np.uint8((out["pred_xstart"] / 2 + 0.5).clamp(0, 1).cpu().permute(0, 2, 3, 1).numpy()[0] * 255.)).resize((ow, oh), resample=Image.LANCZOS)
184
+
185
+ yield Image.fromarray(np.uint8((img / 2 + 0.5).clamp(0, 1).cpu().permute(0, 2, 3, 1).numpy()[0] * 255.)).resize((ow, oh), resample=Image.LANCZOS)
diffusion_arch.py ADDED
@@ -0,0 +1,1208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+
3
+ import math
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+
9
+ import torchvision
10
+ import torchvision.transforms.functional as TF
11
+
12
+ import numpy as np
13
+
14
+ from guided_diffusion.fp16_util import convert_module_to_f16, convert_module_to_f32
15
+ from guided_diffusion.nn import (
16
+ checkpoint,
17
+ conv_nd,
18
+ linear,
19
+ avg_pool_nd,
20
+ zero_module,
21
+ normalization,
22
+ timestep_embedding,
23
+ )
24
+
25
+ class AttentionPool2d(nn.Module):
26
+ """
27
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
28
+ """
29
+
30
+ def __init__(
31
+ self,
32
+ spacial_dim: int,
33
+ embed_dim: int,
34
+ num_heads_channels: int,
35
+ output_dim: int = None,
36
+ ):
37
+ super().__init__()
38
+ self.positional_embedding = nn.Parameter(
39
+ torch.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5
40
+ )
41
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
42
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
43
+ self.num_heads = embed_dim // num_heads_channels
44
+ self.attention = QKVAttention(self.num_heads)
45
+
46
+ def forward(self, x):
47
+ b, c, *_spatial = x.shape
48
+ x = x.reshape(b, c, -1) # NC(HW)
49
+ x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
50
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
51
+ x = self.qkv_proj(x)
52
+ x = self.attention(x)
53
+ x = self.c_proj(x)
54
+ return x[:, :, 0]
55
+
56
+
57
+ class TimestepBlock(nn.Module):
58
+ """
59
+ Any module where forward() takes timestep embeddings as a second argument.
60
+ """
61
+
62
+ @abstractmethod
63
+ def forward(self, x, emb):
64
+ """
65
+ Apply the module to `x` given `emb` timestep embeddings.
66
+ """
67
+
68
+
69
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
70
+ """
71
+ A sequential module that passes timestep embeddings to the children that
72
+ support it as an extra input.
73
+ """
74
+
75
+ def forward(self, x, emb):
76
+ for layer in self:
77
+ if isinstance(layer, TimestepBlock):
78
+ x = layer(x, emb)
79
+ else:
80
+ x = layer(x)
81
+ return x
82
+
83
+ class Upsample(nn.Module):
84
+ """
85
+ An upsampling layer with an optional convolution.
86
+
87
+ :param channels: channels in the inputs and outputs.
88
+ :param use_conv: a bool determining if a convolution is applied.
89
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
90
+ upsampling occurs in the inner-two dimensions.
91
+ """
92
+
93
+ def __init__(self, channels, use_conv, dims=2, out_channels=None):
94
+ super().__init__()
95
+ self.channels = channels
96
+ self.out_channels = out_channels or channels
97
+ self.use_conv = use_conv
98
+ self.dims = dims
99
+ if use_conv:
100
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
101
+
102
+ def forward(self, x):
103
+ assert x.shape[1] == self.channels
104
+ if self.dims == 3:
105
+ x = F.interpolate(
106
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
107
+ )
108
+ else:
109
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
110
+ if self.use_conv:
111
+ x = self.conv(x)
112
+ return x
113
+
114
+
115
+ class Downsample(nn.Module):
116
+ """
117
+ A downsampling layer with an optional convolution.
118
+
119
+ :param channels: channels in the inputs and outputs.
120
+ :param use_conv: a bool determining if a convolution is applied.
121
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
122
+ downsampling occurs in the inner-two dimensions.
123
+ """
124
+
125
+ def __init__(self, channels, use_conv, dims=2, out_channels=None):
126
+ super().__init__()
127
+ self.channels = channels
128
+ self.out_channels = out_channels or channels
129
+ self.use_conv = use_conv
130
+ self.dims = dims
131
+ stride = 2 if dims != 3 else (1, 2, 2)
132
+ if use_conv:
133
+ self.op = conv_nd(
134
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=1
135
+ )
136
+ else:
137
+ assert self.channels == self.out_channels
138
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
139
+
140
+ def forward(self, x):
141
+ assert x.shape[1] == self.channels
142
+ return self.op(x)
143
+
144
+
145
+ class ResBlock(TimestepBlock):
146
+ """
147
+ A residual block that can optionally change the number of channels.
148
+
149
+ :param channels: the number of input channels.
150
+ :param emb_channels: the number of timestep embedding channels.
151
+ :param dropout: the rate of dropout.
152
+ :param out_channels: if specified, the number of out channels.
153
+ :param use_conv: if True and out_channels is specified, use a spatial
154
+ convolution instead of a smaller 1x1 convolution to change the
155
+ channels in the skip connection.
156
+ :param dims: determines if the signal is 1D, 2D, or 3D.
157
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
158
+ :param up: if True, use this block for upsampling.
159
+ :param down: if True, use this block for downsampling.
160
+ """
161
+
162
+ def __init__(
163
+ self,
164
+ channels,
165
+ emb_channels,
166
+ dropout,
167
+ out_channels=None,
168
+ use_conv=False,
169
+ use_scale_shift_norm=False,
170
+ dims=2,
171
+ use_checkpoint=False,
172
+ up=False,
173
+ down=False,
174
+ ):
175
+ super().__init__()
176
+ self.channels = channels
177
+ self.emb_channels = emb_channels
178
+ self.dropout = dropout
179
+ self.out_channels = out_channels or channels
180
+ self.use_conv = use_conv
181
+ self.use_checkpoint = use_checkpoint
182
+ self.use_scale_shift_norm = use_scale_shift_norm
183
+
184
+ self.in_layers = nn.Sequential(
185
+ normalization(channels),
186
+ nn.SiLU(),
187
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
188
+ )
189
+
190
+ self.updown = up or down
191
+
192
+ if up:
193
+ self.h_upd = Upsample(channels, False, dims)
194
+ self.x_upd = Upsample(channels, False, dims)
195
+ elif down:
196
+ self.h_upd = Downsample(channels, False, dims)
197
+ self.x_upd = Downsample(channels, False, dims)
198
+ else:
199
+ self.h_upd = self.x_upd = nn.Identity()
200
+
201
+ self.emb_layers = nn.Sequential(
202
+ nn.SiLU(),
203
+ linear(
204
+ emb_channels,
205
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
206
+ ),
207
+ )
208
+ self.out_layers = nn.Sequential(
209
+ normalization(self.out_channels),
210
+ nn.SiLU(),
211
+ nn.Dropout(p=dropout),
212
+ zero_module(
213
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
214
+ ),
215
+ )
216
+
217
+ if self.out_channels == channels:
218
+ self.skip_connection = nn.Identity()
219
+ elif use_conv:
220
+ self.skip_connection = conv_nd(
221
+ dims, channels, self.out_channels, 3, padding=1
222
+ )
223
+ else:
224
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
225
+
226
+ def forward(self, x, emb):
227
+ """
228
+ Apply the block to a Tensor, conditioned on a timestep embedding.
229
+
230
+ :param x: an [N x C x ...] Tensor of features.
231
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
232
+ :return: an [N x C x ...] Tensor of outputs.
233
+ """
234
+ return checkpoint(
235
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
236
+ )
237
+
238
+ def _forward(self, x, emb):
239
+ if self.updown:
240
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
241
+ h = in_rest(x)
242
+ h = self.h_upd(h)
243
+ x = self.x_upd(x)
244
+ h = in_conv(h)
245
+ else:
246
+ h = self.in_layers(x)
247
+ emb_out = self.emb_layers(emb).type(h.dtype)
248
+ while len(emb_out.shape) < len(h.shape):
249
+ emb_out = emb_out[..., None]
250
+ if self.use_scale_shift_norm:
251
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
252
+ scale, shift = torch.chunk(emb_out, 2, dim=1)
253
+ h = out_norm(h) * (1 + scale) + shift
254
+ h = out_rest(h)
255
+ else:
256
+ h = h + emb_out
257
+ h = self.out_layers(h)
258
+ return self.skip_connection(x) + h
259
+
260
+
261
+ class AttentionBlock(nn.Module):
262
+ """
263
+ An attention block that allows spatial positions to attend to each other.
264
+
265
+ Originally ported from here, but adapted to the N-d case.
266
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
267
+ """
268
+
269
+ def __init__(
270
+ self,
271
+ channels,
272
+ num_heads=1,
273
+ num_head_channels=-1,
274
+ use_checkpoint=False,
275
+ use_new_attention_order=False,
276
+ ):
277
+ super().__init__()
278
+ self.channels = channels
279
+ if num_head_channels == -1:
280
+ self.num_heads = num_heads
281
+ else:
282
+ assert (
283
+ channels % num_head_channels == 0
284
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
285
+ self.num_heads = channels // num_head_channels
286
+ self.use_checkpoint = use_checkpoint
287
+ self.norm = normalization(channels)
288
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
289
+ if use_new_attention_order:
290
+ # split qkv before split heads
291
+ self.attention = QKVAttention(self.num_heads)
292
+ else:
293
+ # split heads before split qkv
294
+ self.attention = QKVAttentionLegacy(self.num_heads)
295
+
296
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
297
+
298
+ def forward(self, x):
299
+ return checkpoint(self._forward, (x,), self.parameters(), True)
300
+
301
+ def _forward(self, x):
302
+ b, c, *spatial = x.shape
303
+ x = x.reshape(b, c, -1)
304
+ qkv = self.qkv(self.norm(x))
305
+ h = self.attention(qkv)
306
+ h = self.proj_out(h)
307
+ return (x + h).reshape(b, c, *spatial)
308
+
309
+
310
+ def count_flops_attn(model, _x, y):
311
+ """
312
+ A counter for the `thop` package to count the operations in an
313
+ attention operation.
314
+ Meant to be used like:
315
+ macs, params = thop.profile(
316
+ model,
317
+ inputs=(inputs, timestamps),
318
+ custom_ops={QKVAttention: QKVAttention.count_flops},
319
+ )
320
+ """
321
+ b, c, *spatial = y[0].shape
322
+ num_spatial = int(np.prod(spatial))
323
+ # We perform two matmuls with the same number of ops.
324
+ # The first computes the weight matrix, the second computes
325
+ # the combination of the value vectors.
326
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
327
+ model.total_ops += torch.DoubleTensor([matmul_ops])
328
+
329
+
330
+ class QKVAttentionLegacy(nn.Module):
331
+ """
332
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
333
+ """
334
+
335
+ def __init__(self, n_heads):
336
+ super().__init__()
337
+ self.n_heads = n_heads
338
+
339
+ def forward(self, qkv):
340
+ """
341
+ Apply QKV attention.
342
+
343
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
344
+ :return: an [N x (H * C) x T] tensor after attention.
345
+ """
346
+ bs, width, length = qkv.shape
347
+ assert width % (3 * self.n_heads) == 0
348
+ ch = width // (3 * self.n_heads)
349
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
350
+ scale = 1 / math.sqrt(math.sqrt(ch))
351
+ weight = torch.einsum(
352
+ "bct,bcs->bts", q * scale, k * scale
353
+ ) # More stable with f16 than dividing afterwards
354
+ weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
355
+ a = torch.einsum("bts,bcs->bct", weight, v)
356
+ return a.reshape(bs, -1, length)
357
+
358
+ @staticmethod
359
+ def count_flops(model, _x, y):
360
+ return count_flops_attn(model, _x, y)
361
+
362
+
363
+ class QKVAttention(nn.Module):
364
+ """
365
+ A module which performs QKV attention and splits in a different order.
366
+ """
367
+
368
+ def __init__(self, n_heads):
369
+ super().__init__()
370
+ self.n_heads = n_heads
371
+
372
+ def forward(self, qkv):
373
+ """
374
+ Apply QKV attention.
375
+
376
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
377
+ :return: an [N x (H * C) x T] tensor after attention.
378
+ """
379
+ bs, width, length = qkv.shape
380
+ assert width % (3 * self.n_heads) == 0
381
+ ch = width // (3 * self.n_heads)
382
+ q, k, v = qkv.chunk(3, dim=1)
383
+ scale = 1 / math.sqrt(math.sqrt(ch))
384
+ weight = torch.einsum(
385
+ "bct,bcs->bts",
386
+ (q * scale).view(bs * self.n_heads, ch, length),
387
+ (k * scale).view(bs * self.n_heads, ch, length),
388
+ ) # More stable with f16 than dividing afterwards
389
+ weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
390
+ a = torch.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
391
+ return a.reshape(bs, -1, length)
392
+
393
+ @staticmethod
394
+ def count_flops(model, _x, y):
395
+ return count_flops_attn(model, _x, y)
396
+
397
+ class UNetModel(nn.Module):
398
+ """
399
+ The full UNet model with attention and timestep embedding.
400
+
401
+ :param in_channels: channels in the input Tensor.
402
+ :param model_channels: base channel count for the model.
403
+ :param out_channels: channels in the output Tensor.
404
+ :param num_res_blocks: number of residual blocks per downsample.
405
+ :param attention_resolutions: a collection of downsample rates at which
406
+ attention will take place. May be a set, list, or tuple.
407
+ For example, if this contains 4, then at 4x downsampling, attention
408
+ will be used.
409
+ :param dropout: the dropout probability.
410
+ :param channel_mult: channel multiplier for each level of the UNet.
411
+ :param conv_resample: if True, use learned convolutions for upsampling and
412
+ downsampling.
413
+ :param dims: determines if the signal is 1D, 2D, or 3D.
414
+ :param num_classes: if specified (as an int), then this model will be
415
+ class-conditional with `num_classes` classes.
416
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
417
+ :param num_heads: the number of attention heads in each attention layer.
418
+ :param num_heads_channels: if specified, ignore num_heads and instead use
419
+ a fixed channel width per attention head.
420
+ :param num_heads_upsample: works with num_heads to set a different number
421
+ of heads for upsampling. Deprecated.
422
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
423
+ :param resblock_updown: use residual blocks for up/downsampling.
424
+ :param use_new_attention_order: use a different attention pattern for potentially
425
+ increased efficiency.
426
+ """
427
+
428
+ def __init__(
429
+ self,
430
+ in_channels,
431
+ out_channels,
432
+ model_channels,
433
+ num_res_blocks,
434
+ attention_resolutions,
435
+ dropout=0,
436
+ channel_mult=(1, 2, 4, 8),
437
+ conv_resample=True,
438
+ dims=2,
439
+ num_classes=None,
440
+ use_checkpoint=False,
441
+ use_fp16=False,
442
+ num_heads=1,
443
+ num_head_channels=-1,
444
+ num_heads_upsample=-1,
445
+ use_scale_shift_norm=False,
446
+ resblock_updown=False,
447
+ use_new_attention_order=False,
448
+ ):
449
+ super().__init__()
450
+
451
+ if num_heads_upsample == -1:
452
+ num_heads_upsample = num_heads
453
+
454
+ self.in_channels = in_channels
455
+ self.model_channels = model_channels
456
+ self.out_channels = out_channels
457
+ self.num_res_blocks = num_res_blocks
458
+ self.attention_resolutions = attention_resolutions
459
+ self.dropout = dropout
460
+ self.channel_mult = channel_mult
461
+ self.conv_resample = conv_resample
462
+ self.num_classes = num_classes
463
+ self.use_checkpoint = use_checkpoint
464
+ self.dtype = torch.float16 if use_fp16 else torch.float32
465
+ self.num_heads = num_heads
466
+ self.num_head_channels = num_head_channels
467
+ self.num_heads_upsample = num_heads_upsample
468
+
469
+ time_embed_dim = model_channels * 4
470
+ self.dt_embed = nn.Sequential(
471
+ linear(model_channels, time_embed_dim),
472
+ nn.SiLU(),
473
+ linear(time_embed_dim, time_embed_dim),
474
+ )
475
+
476
+ if self.num_classes is not None:
477
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
478
+
479
+ ch = input_ch = int(channel_mult[0] * model_channels)
480
+ self.input_blocks = nn.ModuleList(
481
+ [TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
482
+ )
483
+ self._feature_size = ch
484
+ input_block_chans = [ch]
485
+ ds = 1
486
+ for level, mult in enumerate(channel_mult):
487
+ for _ in range(num_res_blocks):
488
+ layers = [
489
+ ResBlock(
490
+ ch,
491
+ time_embed_dim,
492
+ dropout,
493
+ out_channels=int(mult * model_channels),
494
+ dims=dims,
495
+ use_checkpoint=use_checkpoint,
496
+ use_scale_shift_norm=use_scale_shift_norm,
497
+ )
498
+ ]
499
+ ch = int(mult * model_channels)
500
+ if ds in attention_resolutions:
501
+ layers.append(
502
+ AttentionBlock(
503
+ ch,
504
+ use_checkpoint=use_checkpoint,
505
+ num_heads=num_heads,
506
+ num_head_channels=num_head_channels,
507
+ use_new_attention_order=use_new_attention_order,
508
+ )
509
+ )
510
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
511
+ self._feature_size += ch
512
+ input_block_chans.append(ch)
513
+ if level != len(channel_mult) - 1:
514
+ out_ch = ch
515
+ self.input_blocks.append(
516
+ TimestepEmbedSequential(
517
+ ResBlock(
518
+ ch,
519
+ time_embed_dim,
520
+ dropout,
521
+ out_channels=out_ch,
522
+ dims=dims,
523
+ use_checkpoint=use_checkpoint,
524
+ use_scale_shift_norm=use_scale_shift_norm,
525
+ down=True,
526
+ )
527
+ if resblock_updown
528
+ else Downsample(
529
+ ch, conv_resample, dims=dims, out_channels=out_ch
530
+ )
531
+ )
532
+ )
533
+ ch = out_ch
534
+ input_block_chans.append(ch)
535
+ ds *= 2
536
+ self._feature_size += ch
537
+
538
+ self.middle_block = TimestepEmbedSequential(
539
+ ResBlock(
540
+ ch,
541
+ time_embed_dim,
542
+ dropout,
543
+ dims=dims,
544
+ use_checkpoint=use_checkpoint,
545
+ use_scale_shift_norm=use_scale_shift_norm,
546
+ ),
547
+ AttentionBlock(
548
+ ch,
549
+ use_checkpoint=use_checkpoint,
550
+ num_heads=num_heads,
551
+ num_head_channels=num_head_channels,
552
+ use_new_attention_order=use_new_attention_order,
553
+ ),
554
+ ResBlock(
555
+ ch,
556
+ time_embed_dim,
557
+ dropout,
558
+ dims=dims,
559
+ use_checkpoint=use_checkpoint,
560
+ use_scale_shift_norm=use_scale_shift_norm,
561
+ ),
562
+ )
563
+ self._feature_size += ch
564
+
565
+ self.output_blocks = nn.ModuleList([])
566
+ for level, mult in list(enumerate(channel_mult))[::-1]:
567
+ for i in range(num_res_blocks + 1):
568
+ ich = input_block_chans.pop()
569
+ layers = [
570
+ ResBlock(
571
+ ch + ich,
572
+ time_embed_dim,
573
+ dropout,
574
+ out_channels=int(model_channels * mult),
575
+ dims=dims,
576
+ use_checkpoint=use_checkpoint,
577
+ use_scale_shift_norm=use_scale_shift_norm,
578
+ )
579
+ ]
580
+ ch = int(model_channels * mult)
581
+ if ds in attention_resolutions:
582
+ layers.append(
583
+ AttentionBlock(
584
+ ch,
585
+ use_checkpoint=use_checkpoint,
586
+ num_heads=num_heads_upsample,
587
+ num_head_channels=num_head_channels,
588
+ use_new_attention_order=use_new_attention_order,
589
+ )
590
+ )
591
+ if level and i == num_res_blocks:
592
+ out_ch = ch
593
+ layers.append(
594
+ ResBlock(
595
+ ch,
596
+ time_embed_dim,
597
+ dropout,
598
+ out_channels=out_ch,
599
+ dims=dims,
600
+ use_checkpoint=use_checkpoint,
601
+ use_scale_shift_norm=use_scale_shift_norm,
602
+ up=True,
603
+ )
604
+ if resblock_updown
605
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
606
+ )
607
+ ds //= 2
608
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
609
+ self._feature_size += ch
610
+
611
+ self.out = nn.Sequential(
612
+ normalization(ch),
613
+ nn.SiLU(),
614
+ zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
615
+ )
616
+
617
+ def convert_to_fp16(self):
618
+ """
619
+ Convert the torso of the model to float16.
620
+ """
621
+ self.input_blocks.apply(convert_module_to_f16)
622
+ self.middle_block.apply(convert_module_to_f16)
623
+ self.output_blocks.apply(convert_module_to_f16)
624
+
625
+ def convert_to_fp32(self):
626
+ """
627
+ Convert the torso of the model to float32.
628
+ """
629
+ self.input_blocks.apply(convert_module_to_f32)
630
+ self.middle_block.apply(convert_module_to_f32)
631
+ self.output_blocks.apply(convert_module_to_f32)
632
+
633
+ def forward(self, x, dt, y=None):
634
+ """
635
+ Apply the model to an input batch.
636
+
637
+ :param x: an [N x C x ...] Tensor of inputs.
638
+ :param timesteps: a 1-D batch of timesteps.
639
+ :param y: an [N] Tensor of labels, if class-conditional.
640
+ :return: an [N x C x ...] Tensor of outputs.
641
+ """
642
+ assert (y is not None) == (
643
+ self.num_classes is not None
644
+ ), "must specify y if and only if the model is class-conditional"
645
+
646
+ hs = []
647
+ emb = self.dt_embed(timestep_embedding(dt, self.model_channels))
648
+
649
+ if self.num_classes is not None:
650
+ assert y.shape == (x.shape[0],)
651
+ emb = emb + self.label_emb(y)
652
+
653
+ h = x.type(self.dtype)
654
+ for module in self.input_blocks:
655
+ h = module(h, emb)
656
+ hs.append(h)
657
+ h = self.middle_block(h, emb)
658
+ for module in self.output_blocks:
659
+ h = torch.cat([h, hs.pop()], dim=1)
660
+ h = module(h, emb)
661
+ h = h.type(x.dtype)
662
+ return self.out(h)
663
+
664
+
665
+
666
+ class SkippedUNetModel(nn.Module):
667
+ """
668
+ The full UNet model with attention and timestep embedding.
669
+
670
+ :param in_channels: channels in the input Tensor.
671
+ :param model_channels: base channel count for the model.
672
+ :param out_channels: channels in the output Tensor.
673
+ :param num_res_blocks: number of residual blocks per downsample.
674
+ :param attention_resolutions: a collection of downsample rates at which
675
+ attention will take place. May be a set, list, or tuple.
676
+ For example, if this contains 4, then at 4x downsampling, attention
677
+ will be used.
678
+ :param dropout: the dropout probability.
679
+ :param channel_mult: channel multiplier for each level of the UNet.
680
+ :param conv_resample: if True, use learned convolutions for upsampling and
681
+ downsampling.
682
+ :param dims: determines if the signal is 1D, 2D, or 3D.
683
+ :param num_classes: if specified (as an int), then this model will be
684
+ class-conditional with `num_classes` classes.
685
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
686
+ :param num_heads: the number of attention heads in each attention layer.
687
+ :param num_heads_channels: if specified, ignore num_heads and instead use
688
+ a fixed channel width per attention head.
689
+ :param num_heads_upsample: works with num_heads to set a different number
690
+ of heads for upsampling. Deprecated.
691
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
692
+ :param resblock_updown: use residual blocks for up/downsampling.
693
+ :param use_new_attention_order: use a different attention pattern for potentially
694
+ increased efficiency.
695
+ """
696
+
697
+ def __init__(
698
+ self,
699
+ in_channels,
700
+ out_channels,
701
+ model_channels,
702
+ num_res_blocks,
703
+ attention_resolutions,
704
+ dropout=0,
705
+ channel_mult=(1, 2, 4, 8),
706
+ conv_resample=True,
707
+ dims=2,
708
+ num_classes=None,
709
+ use_checkpoint=False,
710
+ use_fp16=False,
711
+ num_heads=1,
712
+ num_head_channels=-1,
713
+ num_heads_upsample=-1,
714
+ use_scale_shift_norm=False,
715
+ resblock_updown=False,
716
+ use_new_attention_order=False,
717
+ ):
718
+ super().__init__()
719
+
720
+ if num_heads_upsample == -1:
721
+ num_heads_upsample = num_heads
722
+
723
+ self.in_channels = in_channels
724
+ self.model_channels = model_channels
725
+ self.out_channels = out_channels
726
+ self.num_res_blocks = num_res_blocks
727
+ self.attention_resolutions = attention_resolutions
728
+ self.dropout = dropout
729
+ self.channel_mult = channel_mult
730
+ self.conv_resample = conv_resample
731
+ self.num_classes = num_classes
732
+ self.use_checkpoint = use_checkpoint
733
+ self.dtype = torch.float16 if use_fp16 else torch.float32
734
+ self.num_heads = num_heads
735
+ self.num_head_channels = num_head_channels
736
+ self.num_heads_upsample = num_heads_upsample
737
+
738
+ time_embed_dim = model_channels * 4
739
+ self.dt_embed = nn.Sequential(
740
+ linear(model_channels, time_embed_dim),
741
+ nn.SiLU(),
742
+ linear(time_embed_dim, time_embed_dim),
743
+ )
744
+
745
+ if self.num_classes is not None:
746
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
747
+
748
+ ch = input_ch = int(channel_mult[0] * model_channels)
749
+ self.input_blocks = nn.ModuleList(
750
+ [TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
751
+ )
752
+ self._feature_size = ch
753
+ input_block_chans = [ch]
754
+ ds = 1
755
+ for level, mult in enumerate(channel_mult):
756
+ for _ in range(num_res_blocks):
757
+ layers = [
758
+ ResBlock(
759
+ ch,
760
+ time_embed_dim,
761
+ dropout,
762
+ out_channels=int(mult * model_channels),
763
+ dims=dims,
764
+ use_checkpoint=use_checkpoint,
765
+ use_scale_shift_norm=use_scale_shift_norm,
766
+ )
767
+ ]
768
+ ch = int(mult * model_channels)
769
+ if ds in attention_resolutions:
770
+ layers.append(
771
+ AttentionBlock(
772
+ ch,
773
+ use_checkpoint=use_checkpoint,
774
+ num_heads=num_heads,
775
+ num_head_channels=num_head_channels,
776
+ use_new_attention_order=use_new_attention_order,
777
+ )
778
+ )
779
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
780
+ self._feature_size += ch
781
+ input_block_chans.append(ch)
782
+ if level != len(channel_mult) - 1:
783
+ out_ch = ch
784
+ self.input_blocks.append(
785
+ TimestepEmbedSequential(
786
+ ResBlock(
787
+ ch,
788
+ time_embed_dim,
789
+ dropout,
790
+ out_channels=out_ch,
791
+ dims=dims,
792
+ use_checkpoint=use_checkpoint,
793
+ use_scale_shift_norm=use_scale_shift_norm,
794
+ down=True,
795
+ )
796
+ if resblock_updown
797
+ else Downsample(
798
+ ch, conv_resample, dims=dims, out_channels=out_ch
799
+ )
800
+ )
801
+ )
802
+ ch = out_ch
803
+ input_block_chans.append(ch)
804
+ ds *= 2
805
+ self._feature_size += ch
806
+
807
+ self.middle_block = TimestepEmbedSequential(
808
+ ResBlock(
809
+ ch,
810
+ time_embed_dim,
811
+ dropout,
812
+ dims=dims,
813
+ use_checkpoint=use_checkpoint,
814
+ use_scale_shift_norm=use_scale_shift_norm,
815
+ ),
816
+ AttentionBlock(
817
+ ch,
818
+ use_checkpoint=use_checkpoint,
819
+ num_heads=num_heads,
820
+ num_head_channels=num_head_channels,
821
+ use_new_attention_order=use_new_attention_order,
822
+ ),
823
+ ResBlock(
824
+ ch,
825
+ time_embed_dim,
826
+ dropout,
827
+ dims=dims,
828
+ use_checkpoint=use_checkpoint,
829
+ use_scale_shift_norm=use_scale_shift_norm,
830
+ ),
831
+ )
832
+ self._feature_size += ch
833
+
834
+ self.output_blocks = nn.ModuleList([])
835
+ for level, mult in list(enumerate(channel_mult))[::-1]:
836
+ for i in range(num_res_blocks + 1):
837
+ ich = input_block_chans.pop()
838
+ layers = [
839
+ ResBlock(
840
+ ch + ich,
841
+ time_embed_dim,
842
+ dropout,
843
+ out_channels=int(model_channels * mult),
844
+ dims=dims,
845
+ use_checkpoint=use_checkpoint,
846
+ use_scale_shift_norm=use_scale_shift_norm,
847
+ )
848
+ ]
849
+ ch = int(model_channels * mult)
850
+ if ds in attention_resolutions:
851
+ layers.append(
852
+ AttentionBlock(
853
+ ch,
854
+ use_checkpoint=use_checkpoint,
855
+ num_heads=num_heads_upsample,
856
+ num_head_channels=num_head_channels,
857
+ use_new_attention_order=use_new_attention_order,
858
+ )
859
+ )
860
+ if level and i == num_res_blocks:
861
+ out_ch = ch
862
+ layers.append(
863
+ ResBlock(
864
+ ch,
865
+ time_embed_dim,
866
+ dropout,
867
+ out_channels=out_ch,
868
+ dims=dims,
869
+ use_checkpoint=use_checkpoint,
870
+ use_scale_shift_norm=use_scale_shift_norm,
871
+ up=True,
872
+ )
873
+ if resblock_updown
874
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
875
+ )
876
+ ds //= 2
877
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
878
+ self._feature_size += ch
879
+
880
+ self.out = nn.Sequential(
881
+ normalization(ch),
882
+ nn.SiLU(),
883
+ zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
884
+ )
885
+
886
+ self.emb_h_layer = nn.Sequential(
887
+ linear(64 * 64 * 3, time_embed_dim),
888
+ nn.SiLU(),
889
+ linear(time_embed_dim, time_embed_dim),
890
+ )
891
+
892
+ def convert_to_fp16(self):
893
+ """
894
+ Convert the torso of the model to float16.
895
+ """
896
+ self.input_blocks.apply(convert_module_to_f16)
897
+ self.middle_block.apply(convert_module_to_f16)
898
+ self.output_blocks.apply(convert_module_to_f16)
899
+
900
+ def convert_to_fp32(self):
901
+ """
902
+ Convert the torso of the model to float32.
903
+ """
904
+ self.input_blocks.apply(convert_module_to_f32)
905
+ self.middle_block.apply(convert_module_to_f32)
906
+ self.output_blocks.apply(convert_module_to_f32)
907
+
908
+ def forward(self, x, dt, shadow=None, **kwargs):
909
+ """
910
+ Apply the model to an input batch.
911
+
912
+ :param x: an [N x C x ...] Tensor of inputs.
913
+ :param timesteps: a 1-D batch of timesteps.
914
+ :param y: an [N] Tensor of labels, if class-conditional.
915
+ :return: an [N x C x ...] Tensor of outputs.
916
+ """
917
+
918
+ hs = []
919
+ emb = self.dt_embed(timestep_embedding(dt, self.model_channels))
920
+ emb_h = F.adaptive_avg_pool2d(x, (64, 64)).view(x.shape[0], -1)
921
+ emb_h = self.emb_h_layer(emb_h)
922
+ emb = emb + emb_h
923
+
924
+ x = torch.cat([x, shadow], dim=1)
925
+
926
+ h = x.type(self.dtype)
927
+ for module in self.input_blocks:
928
+ h = module(h, emb)
929
+ hs.append(h)
930
+ h = self.middle_block(h, emb)
931
+ for module in self.output_blocks:
932
+ h = torch.cat([h, hs.pop()], dim=1)
933
+ h = module(h, emb)
934
+ h = h.type(x.dtype)
935
+ return self.out(h)
936
+
937
+
938
+ class ConditionalUNetModel(UNetModel):
939
+ def __init__(self, in_channels, *args, **kwargs):
940
+ super().__init__(in_channels * 2, *args, **kwargs)
941
+
942
+ def forward(self, x, timesteps, shadow=None, **kwargs):
943
+ x = torch.cat([x, shadow], dim=1)
944
+ return super().forward(x, timesteps, **kwargs)
945
+
946
+
947
+ class ConditionalMaskUNetModel(UNetModel):
948
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
949
+ super().__init__(in_channels * 3, out_channels, *args, **kwargs)
950
+
951
+ def forward(self, x, timesteps, shadow=None, mask=None, **kwargs):
952
+ x = torch.cat([x, shadow, mask], dim=1)
953
+ x = super().forward(x, timesteps, **kwargs)
954
+ return x
955
+
956
+
957
+ class ConditionalLatentUNetModel(UNetModel):
958
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
959
+ super().__init__(in_channels, out_channels, *args, **kwargs)
960
+
961
+ def forward(self, x, timesteps, latent=None, **kwargs):
962
+ x = torch.cat([x, latent], dim=1)
963
+ x = super().forward(x, timesteps, **kwargs)
964
+ return x
965
+
966
+
967
+
968
+ class DensePosteriorConditionalUNet(nn.Module):
969
+ def __init__(
970
+ self,
971
+ in_channels,
972
+ out_channels,
973
+ model_channels,
974
+ num_res_blocks,
975
+ attention_resolutions,
976
+ dropout=0,
977
+ channel_mult=(1, 2, 4, 8),
978
+ conv_resample=True,
979
+ dims=2,
980
+ num_classes=None,
981
+ use_checkpoint=False,
982
+ use_fp16=False,
983
+ num_heads=1,
984
+ num_head_channels=-1,
985
+ num_heads_upsample=-1,
986
+ use_scale_shift_norm=False,
987
+ resblock_updown=False,
988
+ use_new_attention_order=False,
989
+ ):
990
+ super().__init__()
991
+
992
+ if num_heads_upsample == -1:
993
+ num_heads_upsample = num_heads
994
+
995
+ self.in_channels = in_channels
996
+ self.model_channels = model_channels
997
+ self.out_channels = out_channels
998
+ self.num_res_blocks = num_res_blocks
999
+ self.attention_resolutions = attention_resolutions
1000
+ self.dropout = dropout
1001
+ self.channel_mult = channel_mult
1002
+ self.conv_resample = conv_resample
1003
+ self.num_classes = num_classes
1004
+ self.use_checkpoint = use_checkpoint
1005
+ self.dtype = torch.float16 if use_fp16 else torch.float32
1006
+ self.num_heads = num_heads
1007
+ self.num_head_channels = num_head_channels
1008
+ self.num_heads_upsample = num_heads_upsample
1009
+
1010
+ time_embed_dim = model_channels * 4
1011
+ self.dt_embed = nn.Sequential(
1012
+ linear(model_channels, time_embed_dim),
1013
+ nn.SiLU(),
1014
+ linear(time_embed_dim, time_embed_dim),
1015
+ )
1016
+
1017
+ if self.num_classes is not None:
1018
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
1019
+
1020
+ ch = input_ch = int(channel_mult[0] * model_channels)
1021
+ self.input_blocks = nn.ModuleList(
1022
+ [TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
1023
+ )
1024
+ self._feature_size = ch
1025
+ input_block_chans = [ch]
1026
+ ds = 1
1027
+ for level, mult in enumerate(channel_mult):
1028
+ for _ in range(num_res_blocks):
1029
+ layers = [
1030
+ ResBlock(
1031
+ ch,
1032
+ time_embed_dim,
1033
+ dropout,
1034
+ out_channels=int(mult * model_channels),
1035
+ dims=dims,
1036
+ use_checkpoint=use_checkpoint,
1037
+ use_scale_shift_norm=use_scale_shift_norm,
1038
+ )
1039
+ ]
1040
+ ch = int(mult * model_channels)
1041
+ if ds in attention_resolutions:
1042
+ layers.append(
1043
+ AttentionBlock(
1044
+ ch,
1045
+ use_checkpoint=use_checkpoint,
1046
+ num_heads=num_heads,
1047
+ num_head_channels=num_head_channels,
1048
+ use_new_attention_order=use_new_attention_order,
1049
+ )
1050
+ )
1051
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
1052
+ self._feature_size += ch
1053
+ input_block_chans.append(ch)
1054
+ if level != len(channel_mult) - 1:
1055
+ out_ch = ch
1056
+ self.input_blocks.append(
1057
+ TimestepEmbedSequential(
1058
+ ResBlock(
1059
+ ch,
1060
+ time_embed_dim,
1061
+ dropout,
1062
+ out_channels=out_ch,
1063
+ dims=dims,
1064
+ use_checkpoint=use_checkpoint,
1065
+ use_scale_shift_norm=use_scale_shift_norm,
1066
+ down=True,
1067
+ )
1068
+ if resblock_updown
1069
+ else Downsample(
1070
+ ch, conv_resample, dims=dims, out_channels=out_ch
1071
+ )
1072
+ )
1073
+ )
1074
+ ch = out_ch
1075
+ input_block_chans.append(ch)
1076
+ ds *= 2
1077
+ self._feature_size += ch
1078
+
1079
+ self.middle_block = TimestepEmbedSequential(
1080
+ ResBlock(
1081
+ ch,
1082
+ time_embed_dim,
1083
+ dropout,
1084
+ dims=dims,
1085
+ use_checkpoint=use_checkpoint,
1086
+ use_scale_shift_norm=use_scale_shift_norm,
1087
+ ),
1088
+ AttentionBlock(
1089
+ ch,
1090
+ use_checkpoint=use_checkpoint,
1091
+ num_heads=num_heads,
1092
+ num_head_channels=num_head_channels,
1093
+ use_new_attention_order=use_new_attention_order,
1094
+ ),
1095
+ ResBlock(
1096
+ ch,
1097
+ time_embed_dim,
1098
+ dropout,
1099
+ dims=dims,
1100
+ use_checkpoint=use_checkpoint,
1101
+ use_scale_shift_norm=use_scale_shift_norm,
1102
+ ),
1103
+ )
1104
+ self._feature_size += ch
1105
+
1106
+ self.output_blocks = nn.ModuleList([])
1107
+ for level, mult in list(enumerate(channel_mult))[::-1]:
1108
+ for i in range(num_res_blocks + 1):
1109
+ ich = input_block_chans.pop()
1110
+ layers = [
1111
+ ResBlock(
1112
+ ch + ich,
1113
+ time_embed_dim,
1114
+ dropout,
1115
+ out_channels=int(model_channels * mult),
1116
+ dims=dims,
1117
+ use_checkpoint=use_checkpoint,
1118
+ use_scale_shift_norm=use_scale_shift_norm,
1119
+ )
1120
+ ]
1121
+ ch = int(model_channels * mult)
1122
+ if ds in attention_resolutions:
1123
+ layers.append(
1124
+ AttentionBlock(
1125
+ ch,
1126
+ use_checkpoint=use_checkpoint,
1127
+ num_heads=num_heads_upsample,
1128
+ num_head_channels=num_head_channels,
1129
+ use_new_attention_order=use_new_attention_order,
1130
+ )
1131
+ )
1132
+ if level and i == num_res_blocks:
1133
+ out_ch = ch
1134
+ layers.append(
1135
+ ResBlock(
1136
+ ch,
1137
+ time_embed_dim,
1138
+ dropout,
1139
+ out_channels=out_ch,
1140
+ dims=dims,
1141
+ use_checkpoint=use_checkpoint,
1142
+ use_scale_shift_norm=use_scale_shift_norm,
1143
+ up=True,
1144
+ )
1145
+ if resblock_updown
1146
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
1147
+ )
1148
+ ds //= 2
1149
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
1150
+ self._feature_size += ch
1151
+
1152
+ self.out = nn.Sequential(
1153
+ normalization(ch),
1154
+ nn.SiLU(),
1155
+ zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
1156
+ )
1157
+
1158
+ self.emb_h_layer = nn.Sequential(
1159
+ linear(64 * 64 * 3, time_embed_dim),
1160
+ nn.SiLU(),
1161
+ linear(time_embed_dim, time_embed_dim),
1162
+ )
1163
+
1164
+ def convert_to_fp16(self):
1165
+ """
1166
+ Convert the torso of the model to float16.
1167
+ """
1168
+ self.input_blocks.apply(convert_module_to_f16)
1169
+ self.middle_block.apply(convert_module_to_f16)
1170
+ self.output_blocks.apply(convert_module_to_f16)
1171
+
1172
+ def convert_to_fp32(self):
1173
+ """
1174
+ Convert the torso of the model to float32.
1175
+ """
1176
+ self.input_blocks.apply(convert_module_to_f32)
1177
+ self.middle_block.apply(convert_module_to_f32)
1178
+ self.output_blocks.apply(convert_module_to_f32)
1179
+
1180
+ def forward(self, x, dt, latent, **kwargs):
1181
+ """
1182
+ Apply the model to an input batch.
1183
+
1184
+ :param x: an [N x C x ...] Tensor of inputs.
1185
+ :param timesteps: a 1-D batch of timesteps.
1186
+ :param y: an [N] Tensor of labels, if class-conditional.
1187
+ :return: an [N x C x ...] Tensor of outputs.
1188
+ """
1189
+
1190
+
1191
+ hs = []
1192
+ emb = self.dt_embed(timestep_embedding(dt, self.model_channels))
1193
+ emb_h = F.adaptive_avg_pool2d(x, (64, 64)).view(x.shape[0], -1)
1194
+ emb_h = self.emb_h_layer(emb_h)
1195
+ emb = emb + emb_h
1196
+
1197
+ x = torch.cat([x, latent], dim=1)
1198
+
1199
+ h = x.type(self.dtype)
1200
+ for module in self.input_blocks:
1201
+ h = module(h, emb)
1202
+ hs.append(h)
1203
+ h = self.middle_block(h, emb)
1204
+ for module in self.output_blocks:
1205
+ h = torch.cat([h, hs.pop()], dim=1)
1206
+ h = module(h, emb)
1207
+ h = h.type(x.dtype)
1208
+ return self.out(h)
examples/lssd2025.jpg ADDED
examples/web-shadow0243.jpg ADDED
examples/web-shadow0248.jpg ADDED
header.html ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div style="text-align: center; max-width: 650px; margin: 0 auto;">
2
+ <div style="
3
+ display: inline-flex;
4
+ gap: 0.8rem;
5
+ font-size: 1.75rem;
6
+ justify-content: center;
7
+ margin-bottom: 10px;
8
+ ">
9
+ <h1 style="font-weight: 900; align-items: center; margin-bottom: 7px; margin-top: 20px;">
10
+ Instance Shadow Removal
11
+ </h1>
12
+ </div>
13
+ <div>
14
+ <p style="align-items: center; margin-bottom: 7px;">
15
+ The new sota shadow removal model even for instnace case. <br> Add a mask for what shadow want to removal. Please draw as accurate as possible.
16
+ </p>
17
+ </div>
18
+ </div>
net_g_400000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9eb122113d07cfb5321ea20f34884a739171e74c4d9cb54d8ee69ed485b8e3f
3
+ size 4532130337