MINEOGO's picture
Update app.py
86d3caa verified
raw
history blame
16.2 kB
import gradio as gr
from huggingface_hub import InferenceClient, HfHubHTTPError
import os
import re
import traceback
# --- Configuration ---
API_TOKEN = os.getenv("HF_TOKEN", None)
# MODEL = "Qwen/Qwen3-32B" # This is a very large model, might require specific inference endpoint/hardware
# Let's try a smaller, generally available model for testing first, e.g., Mixtral
# You can change this back if you are sure Qwen3-32B is available and configured for your space/token
# MODEL = "mistralai/Mixtral-8x7B-Instruct-v0.1"
# Or uncomment the Qwen model if you are certain it's correctly set up for inference:
MODEL = "Qwen/Qwen3-32B"
# i have used Qwen3 because its quiet compatible
# --- Hugging Face Client Initialization ---
print("--- App Start ---")
if not API_TOKEN:
print("Warning: HF_TOKEN environment variable not set. Using anonymous access.")
print("Certain models might require a token for access.")
else:
print(f"HF_TOKEN found (length={len(API_TOKEN)}).") # Don't print the token itself
try:
print(f"Initializing Inference Client for model: {MODEL}")
# Explicitly pass token=None if not found, though InferenceClient handles it.
client = InferenceClient(model=MODEL, token=API_TOKEN if API_TOKEN else None)
print("Inference Client Initialized Successfully.")
# Optional: Add a quick test call if feasible, but be mindful of potential costs/rate limits
# try:
# client.text_generation("test", max_new_tokens=1)
# print("Test generation successful.")
# except Exception as test_e:
# print(f"Warning: Test generation failed. Client might be initialized but model access could be problematic. Error: {test_e}")
except HfHubHTTPError as http_err:
# More specific error handling for HTTP errors (like 401 Unauthorized, 403 Forbidden, 404 Not Found)
error_message = (
f"Failed to initialize model client for {MODEL} due to an HTTP error.\n"
f"Status Code: {http_err.response.status_code}\n"
f"Error: {http_err}\n"
f"Check:\n"
f"1. If '{MODEL}' is a valid model ID on Hugging Face Hub.\n"
f"2. If the model requires gating or specific permissions.\n"
f"3. If your HF_TOKEN is correct and has the necessary permissions (set as a Secret in your Space).\n"
f"4. If the default Inference API supports this model or if a dedicated Inference Endpoint is needed."
)
print(f"ERROR: {error_message}")
raise gr.Error(error_message)
except Exception as e:
error_message = (
f"An unexpected error occurred while initializing the model client for {MODEL}.\n"
f"Error Type: {type(e).__name__}\n"
f"Error: {e}\n"
f"Traceback:\n{traceback.format_exc()}\n" # Add traceback
f"Check HF_TOKEN, model availability, network connection, and Space resources."
)
print(f"ERROR: {error_message}")
raise gr.Error(error_message)
# --- Helper Functions ---
# Parse all ```filename.ext\n<code>``` blocks
def parse_code_blocks(response: str) -> list:
pattern = r"```([^\n]+)\n(.*?)```"
blocks = re.findall(pattern, response, re.DOTALL)
files = []
for filename, code in blocks:
filename = filename.strip()
code = code.strip()
# Basic language detection (can be expanded)
lang = None
if filename.endswith(".py"):
lang = "python"
elif filename.endswith(".js"):
lang = "javascript"
elif filename.endswith(".html"):
lang = "html"
elif filename.endswith(".css"):
lang = "css"
elif filename.endswith(".json"):
lang = "json"
elif filename.endswith(".md"):
lang = "markdown"
elif filename.endswith(".sh") or filename.endswith(".bash"):
lang = "bash"
elif filename.endswith(".java"):
lang = "java"
# Add more extensions as needed
files.append({
"filename": filename,
"language": lang,
"code": code
})
# Add logging to see what's parsed
# print(f"Parsed {len(files)} code blocks.")
# for i, f in enumerate(files):
# print(f" Block {i}: filename='{f['filename']}', lang='{f['language']}', code_len={len(f['code'])}")
return files
def strip_think_tags(text: str) -> str:
return re.sub(r"<think>.*?</think>", "", text, flags=re.DOTALL).strip()
def extract_thoughts(text: str) -> str:
matches = re.findall(r"<think>(.*?)</think>", text, flags=re.DOTALL)
# Only return the last thought block for cleaner display? Or join all? Let's join.
return "\n---\n".join(match.strip() for match in matches).strip()
# --- System Message ---
system_message = (
"You are a helpful AI assistant specialized in generating website code. "
"Generate all the necessary files based on the user's request. "
"Output each file within a separate markdown code block formatted exactly like this:\n"
"```filename.ext\n"
"<code>\n"
"```\n"
"Do not add any explanatory text outside the code blocks. Ensure the filenames have appropriate extensions. "
"If you need to think step-by-step, use <think>...</think> tags. These tags will be hidden from the final user output but help guide your generation process."
)
# --- Code Generation Function ---
def generate_code(prompt, backend_choice, max_tokens, temperature, top_p):
if not prompt:
# Handle empty prompt case
yield [], gr.update(value="Please enter a description for the website.", visible=True)
return
# Use f-string formatting for clarity
user_prompt = f"USER_PROMPT: {prompt}\nUSER_BACKEND_PREFERENCE: {backend_choice}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_prompt}
]
full_response = ""
current_thoughts = ""
accumulated_error = "" # Accumulate errors during stream
# Reset outputs: Clear previous code blocks and show/clear thinking box
# Yield an empty list to the gr.Column to clear it.
# Make thinking box visible but empty.
yield [], gr.update(visible=True, value="Generating code...")
print(f"\n--- Generating Code ---")
print(f"Prompt: {prompt[:100]}...") # Log truncated prompt
print(f"Backend: {backend_choice}, Max Tokens: {max_tokens}, Temp: {temperature}, Top-P: {top_p}")
try:
stream = client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature if temperature > 0 else 0.01, # Ensure temp is positive
top_p=top_p,
# Consider adding stop sequences if the model tends to run on
# stop=["```\n\n", "\n\nHuman:", "\n\nUSER:"] # Example stop sequences
)
code_updates = [] # Store the gr.Code components to yield
for i, message in enumerate(stream):
# Check for errors in the stream message (some providers might include error info)
if hasattr(message, 'error') and message.error:
accumulated_error += f"Error in stream chunk {i}: {message.error}\n"
print(f"ERROR in stream chunk {i}: {message.error}")
continue # Skip this chunk if it's an error indicator
# Ensure the path to content is correct
try:
# Common path: message.choices[0].delta.content
token = message.choices[0].delta.content
# Handle potential None token at the end of the stream or in error cases
if token is None:
token = ""
# print(f"Token {i}: '{token}'") # DEBUG: print each token
except (AttributeError, IndexError, TypeError) as e:
# Handle unexpected message structure
print(f"Warning: Could not extract token from stream message {i}. Structure: {message}. Error: {e}")
token = "" # Assign empty string to avoid breaking accumulation
if isinstance(token, str):
full_response += token
# Update thinking box periodically (e.g., every 10 tokens or if thoughts change)
if i % 10 == 0 or "<think>" in token or "</think>" in token:
thoughts = extract_thoughts(full_response)
if thoughts != current_thoughts:
current_thoughts = thoughts
# Don't yield code_updates here yet, only update thoughts
yield code_updates, gr.update(value=current_thoughts if current_thoughts else "Thinking...", visible=True)
# Update code blocks less frequently or when a block seems complete
# Heuristic: update if the response ends with ```
if token.strip().endswith("```") or i % 20 == 0: # Adjust frequency as needed
cleaned_response = strip_think_tags(full_response)
parsed_files = parse_code_blocks(cleaned_response)
# Create gr.Code components for the parsed files
# Compare with existing code_updates to avoid redundant updates if content hasn't changed significantly
new_code_updates = []
changed = False
if len(parsed_files) != len(code_updates):
changed = True
else:
# Quick check if filenames/code lengths differ significantly
for idx, f in enumerate(parsed_files):
if (idx >= len(code_updates) or
f["filename"] != code_updates[idx].label or
len(f["code"]) != len(code_updates[idx].value)): # Simple length check
changed = True
break
if changed or not code_updates: # Update if changed or first time
code_updates = []
for f in parsed_files:
code_updates.append(
gr.Code(
value=f["code"],
label=f["filename"],
language=f["language"]
)
)
# Yield the list of gr.Code components to the gr.Column
# Also update thoughts (might be slightly out of sync, but acceptable)
yield code_updates, gr.update(value=current_thoughts if current_thoughts else "Thinking...", visible=True)
# --- Final Update after Stream Ends ---
print("Stream finished.")
if accumulated_error:
print(f"Errors occurred during stream:\n{accumulated_error}")
# Decide how to show this to the user, e.g., append to thoughts or show separately
current_thoughts += f"\n\n**Streaming Errors:**\n{accumulated_error}"
cleaned_response = strip_think_tags(full_response)
final_files = parse_code_blocks(cleaned_response)
print(f"Final parsed files: {len(final_files)}")
final_code_updates = []
if not final_files and not accumulated_error:
# Handle case where no code blocks were generated
final_code_updates.append(gr.Markdown("No code blocks were generated. The model might have responded with text instead, or the format was incorrect."))
print("Warning: No code blocks found in the final response.")
# Optionally show the raw response for debugging
# final_code_updates.append(gr.Code(label="Raw Response", value=cleaned_response, language="text"))
elif not final_files and accumulated_error:
final_code_updates.append(gr.Markdown(f"**Error during generation:**\n{accumulated_error}"))
else:
for f in final_files:
final_code_updates.append(
gr.Code(
value=f["code"],
label=f["filename"],
language=f["language"]
)
)
# Yield final code blocks and hide thinking box (or show final thoughts/errors)
final_thought_update = gr.update(visible=True if current_thoughts else False, value=current_thoughts)
yield final_code_updates, final_thought_update
except HfHubHTTPError as http_err:
# Handle errors during the streaming call itself
error_message = (
f"**Error during code generation (HTTP Error):**\n"
f"Status Code: {http_err.response.status_code}\n"
f"Error: {http_err}\n"
f"This could be due to rate limits, invalid input, model errors, or token issues.\n"
f"Check the Hugging Face Space logs for more details."
)
print(f"ERROR: {error_message}")
print(traceback.format_exc())
# Yield error message in the output area
yield [gr.Markdown(error_message)], gr.update(visible=False) # Hide thinking box on error
except Exception as e:
error_message = (
f"**An unexpected error occurred during code generation:**\n"
f"Error Type: {type(e).__name__}\n"
f"Error: {e}\n\n"
f"**Traceback:**\n```\n{traceback.format_exc()}\n```\n"
f"Check the Hugging Face Space logs for more details."
)
print(f"ERROR: {error_message}")
# Yield error message in the output area
yield [gr.Markdown(error_message)], gr.update(visible=False) # Hide thinking box on error
# --- Gradio Interface ---
with gr.Blocks(css=".gradio-container { max-width: 90% !important; }") as demo:
gr.Markdown("# ✨ Website Code Generator ✨")
gr.Markdown("Describe the website you want. Code files will appear below. Uses `mistralai/Mixtral-8x7B-Instruct-v0.1` by default (check code to change).") # Update description
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(label="Website Description", lines=6, placeholder="e.g., A simple landing page with a title, a paragraph, and a button linking to example.com")
backend_radio = gr.Radio(["Static (HTML/CSS/JS)", "Flask", "Node.js"], label="Backend Preference (Influences AI)", value="Static (HTML/CSS/JS)")
generate_button = gr.Button("✨ Generate Website Code", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
max_tokens_slider = gr.Slider(512, 8192, value=4096, step=256, label="Max New Tokens") # Increased max potential tokens
temperature_slider = gr.Slider(0.0, 1.2, value=0.6, step=0.05, label="Temperature (0=deterministic, >1=more creative)") # Allow 0
top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P (Nucleus Sampling)")
with gr.Column(scale=3):
thinking_box = gr.Textbox(label="Model Activity / Thoughts", visible=False, interactive=False, lines=2)
# Use gr.Column to hold the dynamic code blocks
# Remove the update lambda, it's not needed for Column
file_outputs = gr.Column(elem_id="code-output-area")
generate_button.click(
fn=generate_code,
inputs=[prompt_input, backend_radio, max_tokens_slider, temperature_slider, top_p_slider],
# Output to the Column and the Textbox
outputs=[file_outputs, thinking_box],
# api_name="generate_code" # Optional: for API access
)
# --- Launch ---
if __name__ == "__main__":
print("Starting Gradio App...")
# Use queue() for handling multiple users and streaming
# Set share=False unless you specifically want a public link from local execution
# Set debug=True for more detailed Gradio errors locally (remove/set False for production)
demo.queue().launch(debug=False, share=False)
print("Gradio App Launched.")