Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,66 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
import os
|
4 |
import re
|
|
|
5 |
|
|
|
6 |
API_TOKEN = os.getenv("HF_TOKEN", None)
|
|
|
|
|
|
|
|
|
|
|
7 |
MODEL = "Qwen/Qwen3-32B"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
try:
|
10 |
print(f"Initializing Inference Client for model: {MODEL}")
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
except Exception as e:
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Parse all ```filename.ext\n<code>``` blocks
|
16 |
def parse_code_blocks(response: str) -> list:
|
@@ -18,6 +68,9 @@ def parse_code_blocks(response: str) -> list:
|
|
18 |
blocks = re.findall(pattern, response, re.DOTALL)
|
19 |
files = []
|
20 |
for filename, code in blocks:
|
|
|
|
|
|
|
21 |
lang = None
|
22 |
if filename.endswith(".py"):
|
23 |
lang = "python"
|
@@ -27,27 +80,56 @@ def parse_code_blocks(response: str) -> list:
|
|
27 |
lang = "html"
|
28 |
elif filename.endswith(".css"):
|
29 |
lang = "css"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
files.append({
|
31 |
-
"filename": filename
|
32 |
"language": lang,
|
33 |
-
"code": code
|
34 |
})
|
|
|
|
|
|
|
|
|
35 |
return files
|
36 |
|
37 |
def strip_think_tags(text: str) -> str:
|
38 |
-
return re.sub(r"<think>.*?</think>", "", text, flags=re.DOTALL)
|
39 |
|
40 |
def extract_thoughts(text: str) -> str:
|
41 |
matches = re.findall(r"<think>(.*?)</think>", text, flags=re.DOTALL)
|
42 |
-
return
|
|
|
43 |
|
|
|
44 |
system_message = (
|
45 |
-
"You are
|
46 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
|
|
|
49 |
def generate_code(prompt, backend_choice, max_tokens, temperature, top_p):
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
messages = [
|
53 |
{"role": "system", "content": system_message},
|
@@ -56,73 +138,197 @@ def generate_code(prompt, backend_choice, max_tokens, temperature, top_p):
|
|
56 |
|
57 |
full_response = ""
|
58 |
current_thoughts = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
|
|
62 |
|
63 |
try:
|
64 |
stream = client.chat_completion(
|
65 |
messages=messages,
|
66 |
max_tokens=max_tokens,
|
67 |
stream=True,
|
68 |
-
temperature=temperature,
|
69 |
top_p=top_p,
|
|
|
|
|
70 |
)
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
if isinstance(token, str):
|
75 |
full_response += token
|
76 |
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
except Exception as e:
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
|
|
100 |
with gr.Blocks(css=".gradio-container { max-width: 90% !important; }") as demo:
|
101 |
gr.Markdown("# ✨ Website Code Generator ✨")
|
102 |
-
gr.Markdown("Describe the website you want.
|
103 |
|
104 |
with gr.Row():
|
105 |
with gr.Column(scale=2):
|
106 |
-
prompt_input = gr.Textbox(label="Website Description", lines=6)
|
107 |
-
backend_radio = gr.Radio(["Static", "Flask", "Node.js"], label="Backend
|
108 |
generate_button = gr.Button("✨ Generate Website Code", variant="primary")
|
109 |
|
|
|
|
|
|
|
|
|
|
|
110 |
with gr.Column(scale=3):
|
111 |
-
|
112 |
-
|
|
|
|
|
113 |
|
114 |
-
with gr.Accordion("Advanced Settings", open=False):
|
115 |
-
max_tokens_slider = gr.Slider(512, 4096, value=3072, step=256, label="Max New Tokens")
|
116 |
-
temperature_slider = gr.Slider(0.1, 1.2, value=0.7, step=0.1, label="Temperature")
|
117 |
-
top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
|
118 |
|
119 |
generate_button.click(
|
120 |
fn=generate_code,
|
121 |
inputs=[prompt_input, backend_radio, max_tokens_slider, temperature_slider, top_p_slider],
|
|
|
122 |
outputs=[file_outputs, thinking_box],
|
|
|
123 |
)
|
124 |
|
|
|
125 |
if __name__ == "__main__":
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient, HfHubHTTPError
|
3 |
import os
|
4 |
import re
|
5 |
+
import traceback
|
6 |
|
7 |
+
# --- Configuration ---
|
8 |
API_TOKEN = os.getenv("HF_TOKEN", None)
|
9 |
+
# MODEL = "Qwen/Qwen3-32B" # This is a very large model, might require specific inference endpoint/hardware
|
10 |
+
# Let's try a smaller, generally available model for testing first, e.g., Mixtral
|
11 |
+
# You can change this back if you are sure Qwen3-32B is available and configured for your space/token
|
12 |
+
# MODEL = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
13 |
+
# Or uncomment the Qwen model if you are certain it's correctly set up for inference:
|
14 |
MODEL = "Qwen/Qwen3-32B"
|
15 |
+
# i have used Qwen3 because its quiet compatible
|
16 |
+
|
17 |
+
|
18 |
+
# --- Hugging Face Client Initialization ---
|
19 |
+
print("--- App Start ---")
|
20 |
+
if not API_TOKEN:
|
21 |
+
print("Warning: HF_TOKEN environment variable not set. Using anonymous access.")
|
22 |
+
print("Certain models might require a token for access.")
|
23 |
+
else:
|
24 |
+
print(f"HF_TOKEN found (length={len(API_TOKEN)}).") # Don't print the token itself
|
25 |
|
26 |
try:
|
27 |
print(f"Initializing Inference Client for model: {MODEL}")
|
28 |
+
# Explicitly pass token=None if not found, though InferenceClient handles it.
|
29 |
+
client = InferenceClient(model=MODEL, token=API_TOKEN if API_TOKEN else None)
|
30 |
+
print("Inference Client Initialized Successfully.")
|
31 |
+
# Optional: Add a quick test call if feasible, but be mindful of potential costs/rate limits
|
32 |
+
# try:
|
33 |
+
# client.text_generation("test", max_new_tokens=1)
|
34 |
+
# print("Test generation successful.")
|
35 |
+
# except Exception as test_e:
|
36 |
+
# print(f"Warning: Test generation failed. Client might be initialized but model access could be problematic. Error: {test_e}")
|
37 |
+
|
38 |
+
except HfHubHTTPError as http_err:
|
39 |
+
# More specific error handling for HTTP errors (like 401 Unauthorized, 403 Forbidden, 404 Not Found)
|
40 |
+
error_message = (
|
41 |
+
f"Failed to initialize model client for {MODEL} due to an HTTP error.\n"
|
42 |
+
f"Status Code: {http_err.response.status_code}\n"
|
43 |
+
f"Error: {http_err}\n"
|
44 |
+
f"Check:\n"
|
45 |
+
f"1. If '{MODEL}' is a valid model ID on Hugging Face Hub.\n"
|
46 |
+
f"2. If the model requires gating or specific permissions.\n"
|
47 |
+
f"3. If your HF_TOKEN is correct and has the necessary permissions (set as a Secret in your Space).\n"
|
48 |
+
f"4. If the default Inference API supports this model or if a dedicated Inference Endpoint is needed."
|
49 |
+
)
|
50 |
+
print(f"ERROR: {error_message}")
|
51 |
+
raise gr.Error(error_message)
|
52 |
except Exception as e:
|
53 |
+
error_message = (
|
54 |
+
f"An unexpected error occurred while initializing the model client for {MODEL}.\n"
|
55 |
+
f"Error Type: {type(e).__name__}\n"
|
56 |
+
f"Error: {e}\n"
|
57 |
+
f"Traceback:\n{traceback.format_exc()}\n" # Add traceback
|
58 |
+
f"Check HF_TOKEN, model availability, network connection, and Space resources."
|
59 |
+
)
|
60 |
+
print(f"ERROR: {error_message}")
|
61 |
+
raise gr.Error(error_message)
|
62 |
+
|
63 |
+
# --- Helper Functions ---
|
64 |
|
65 |
# Parse all ```filename.ext\n<code>``` blocks
|
66 |
def parse_code_blocks(response: str) -> list:
|
|
|
68 |
blocks = re.findall(pattern, response, re.DOTALL)
|
69 |
files = []
|
70 |
for filename, code in blocks:
|
71 |
+
filename = filename.strip()
|
72 |
+
code = code.strip()
|
73 |
+
# Basic language detection (can be expanded)
|
74 |
lang = None
|
75 |
if filename.endswith(".py"):
|
76 |
lang = "python"
|
|
|
80 |
lang = "html"
|
81 |
elif filename.endswith(".css"):
|
82 |
lang = "css"
|
83 |
+
elif filename.endswith(".json"):
|
84 |
+
lang = "json"
|
85 |
+
elif filename.endswith(".md"):
|
86 |
+
lang = "markdown"
|
87 |
+
elif filename.endswith(".sh") or filename.endswith(".bash"):
|
88 |
+
lang = "bash"
|
89 |
+
elif filename.endswith(".java"):
|
90 |
+
lang = "java"
|
91 |
+
# Add more extensions as needed
|
92 |
+
|
93 |
files.append({
|
94 |
+
"filename": filename,
|
95 |
"language": lang,
|
96 |
+
"code": code
|
97 |
})
|
98 |
+
# Add logging to see what's parsed
|
99 |
+
# print(f"Parsed {len(files)} code blocks.")
|
100 |
+
# for i, f in enumerate(files):
|
101 |
+
# print(f" Block {i}: filename='{f['filename']}', lang='{f['language']}', code_len={len(f['code'])}")
|
102 |
return files
|
103 |
|
104 |
def strip_think_tags(text: str) -> str:
|
105 |
+
return re.sub(r"<think>.*?</think>", "", text, flags=re.DOTALL).strip()
|
106 |
|
107 |
def extract_thoughts(text: str) -> str:
|
108 |
matches = re.findall(r"<think>(.*?)</think>", text, flags=re.DOTALL)
|
109 |
+
# Only return the last thought block for cleaner display? Or join all? Let's join.
|
110 |
+
return "\n---\n".join(match.strip() for match in matches).strip()
|
111 |
|
112 |
+
# --- System Message ---
|
113 |
system_message = (
|
114 |
+
"You are a helpful AI assistant specialized in generating website code. "
|
115 |
+
"Generate all the necessary files based on the user's request. "
|
116 |
+
"Output each file within a separate markdown code block formatted exactly like this:\n"
|
117 |
+
"```filename.ext\n"
|
118 |
+
"<code>\n"
|
119 |
+
"```\n"
|
120 |
+
"Do not add any explanatory text outside the code blocks. Ensure the filenames have appropriate extensions. "
|
121 |
+
"If you need to think step-by-step, use <think>...</think> tags. These tags will be hidden from the final user output but help guide your generation process."
|
122 |
)
|
123 |
|
124 |
+
# --- Code Generation Function ---
|
125 |
def generate_code(prompt, backend_choice, max_tokens, temperature, top_p):
|
126 |
+
if not prompt:
|
127 |
+
# Handle empty prompt case
|
128 |
+
yield [], gr.update(value="Please enter a description for the website.", visible=True)
|
129 |
+
return
|
130 |
+
|
131 |
+
# Use f-string formatting for clarity
|
132 |
+
user_prompt = f"USER_PROMPT: {prompt}\nUSER_BACKEND_PREFERENCE: {backend_choice}"
|
133 |
|
134 |
messages = [
|
135 |
{"role": "system", "content": system_message},
|
|
|
138 |
|
139 |
full_response = ""
|
140 |
current_thoughts = ""
|
141 |
+
accumulated_error = "" # Accumulate errors during stream
|
142 |
+
|
143 |
+
# Reset outputs: Clear previous code blocks and show/clear thinking box
|
144 |
+
# Yield an empty list to the gr.Column to clear it.
|
145 |
+
# Make thinking box visible but empty.
|
146 |
+
yield [], gr.update(visible=True, value="Generating code...")
|
147 |
|
148 |
+
print(f"\n--- Generating Code ---")
|
149 |
+
print(f"Prompt: {prompt[:100]}...") # Log truncated prompt
|
150 |
+
print(f"Backend: {backend_choice}, Max Tokens: {max_tokens}, Temp: {temperature}, Top-P: {top_p}")
|
151 |
|
152 |
try:
|
153 |
stream = client.chat_completion(
|
154 |
messages=messages,
|
155 |
max_tokens=max_tokens,
|
156 |
stream=True,
|
157 |
+
temperature=temperature if temperature > 0 else 0.01, # Ensure temp is positive
|
158 |
top_p=top_p,
|
159 |
+
# Consider adding stop sequences if the model tends to run on
|
160 |
+
# stop=["```\n\n", "\n\nHuman:", "\n\nUSER:"] # Example stop sequences
|
161 |
)
|
162 |
|
163 |
+
code_updates = [] # Store the gr.Code components to yield
|
164 |
+
|
165 |
+
for i, message in enumerate(stream):
|
166 |
+
# Check for errors in the stream message (some providers might include error info)
|
167 |
+
if hasattr(message, 'error') and message.error:
|
168 |
+
accumulated_error += f"Error in stream chunk {i}: {message.error}\n"
|
169 |
+
print(f"ERROR in stream chunk {i}: {message.error}")
|
170 |
+
continue # Skip this chunk if it's an error indicator
|
171 |
+
|
172 |
+
# Ensure the path to content is correct
|
173 |
+
try:
|
174 |
+
# Common path: message.choices[0].delta.content
|
175 |
+
token = message.choices[0].delta.content
|
176 |
+
# Handle potential None token at the end of the stream or in error cases
|
177 |
+
if token is None:
|
178 |
+
token = ""
|
179 |
+
# print(f"Token {i}: '{token}'") # DEBUG: print each token
|
180 |
+
except (AttributeError, IndexError, TypeError) as e:
|
181 |
+
# Handle unexpected message structure
|
182 |
+
print(f"Warning: Could not extract token from stream message {i}. Structure: {message}. Error: {e}")
|
183 |
+
token = "" # Assign empty string to avoid breaking accumulation
|
184 |
+
|
185 |
if isinstance(token, str):
|
186 |
full_response += token
|
187 |
|
188 |
+
# Update thinking box periodically (e.g., every 10 tokens or if thoughts change)
|
189 |
+
if i % 10 == 0 or "<think>" in token or "</think>" in token:
|
190 |
+
thoughts = extract_thoughts(full_response)
|
191 |
+
if thoughts != current_thoughts:
|
192 |
+
current_thoughts = thoughts
|
193 |
+
# Don't yield code_updates here yet, only update thoughts
|
194 |
+
yield code_updates, gr.update(value=current_thoughts if current_thoughts else "Thinking...", visible=True)
|
195 |
+
|
196 |
+
|
197 |
+
# Update code blocks less frequently or when a block seems complete
|
198 |
+
# Heuristic: update if the response ends with ```
|
199 |
+
if token.strip().endswith("```") or i % 20 == 0: # Adjust frequency as needed
|
200 |
+
cleaned_response = strip_think_tags(full_response)
|
201 |
+
parsed_files = parse_code_blocks(cleaned_response)
|
202 |
+
|
203 |
+
# Create gr.Code components for the parsed files
|
204 |
+
# Compare with existing code_updates to avoid redundant updates if content hasn't changed significantly
|
205 |
+
new_code_updates = []
|
206 |
+
changed = False
|
207 |
+
if len(parsed_files) != len(code_updates):
|
208 |
+
changed = True
|
209 |
+
else:
|
210 |
+
# Quick check if filenames/code lengths differ significantly
|
211 |
+
for idx, f in enumerate(parsed_files):
|
212 |
+
if (idx >= len(code_updates) or
|
213 |
+
f["filename"] != code_updates[idx].label or
|
214 |
+
len(f["code"]) != len(code_updates[idx].value)): # Simple length check
|
215 |
+
changed = True
|
216 |
+
break
|
217 |
+
|
218 |
+
if changed or not code_updates: # Update if changed or first time
|
219 |
+
code_updates = []
|
220 |
+
for f in parsed_files:
|
221 |
+
code_updates.append(
|
222 |
+
gr.Code(
|
223 |
+
value=f["code"],
|
224 |
+
label=f["filename"],
|
225 |
+
language=f["language"]
|
226 |
+
)
|
227 |
+
)
|
228 |
+
# Yield the list of gr.Code components to the gr.Column
|
229 |
+
# Also update thoughts (might be slightly out of sync, but acceptable)
|
230 |
+
yield code_updates, gr.update(value=current_thoughts if current_thoughts else "Thinking...", visible=True)
|
231 |
+
|
232 |
+
|
233 |
+
# --- Final Update after Stream Ends ---
|
234 |
+
print("Stream finished.")
|
235 |
+
if accumulated_error:
|
236 |
+
print(f"Errors occurred during stream:\n{accumulated_error}")
|
237 |
+
# Decide how to show this to the user, e.g., append to thoughts or show separately
|
238 |
+
current_thoughts += f"\n\n**Streaming Errors:**\n{accumulated_error}"
|
239 |
+
|
240 |
+
cleaned_response = strip_think_tags(full_response)
|
241 |
+
final_files = parse_code_blocks(cleaned_response)
|
242 |
+
print(f"Final parsed files: {len(final_files)}")
|
243 |
+
|
244 |
+
final_code_updates = []
|
245 |
+
if not final_files and not accumulated_error:
|
246 |
+
# Handle case where no code blocks were generated
|
247 |
+
final_code_updates.append(gr.Markdown("No code blocks were generated. The model might have responded with text instead, or the format was incorrect."))
|
248 |
+
print("Warning: No code blocks found in the final response.")
|
249 |
+
# Optionally show the raw response for debugging
|
250 |
+
# final_code_updates.append(gr.Code(label="Raw Response", value=cleaned_response, language="text"))
|
251 |
+
|
252 |
+
elif not final_files and accumulated_error:
|
253 |
+
final_code_updates.append(gr.Markdown(f"**Error during generation:**\n{accumulated_error}"))
|
254 |
+
|
255 |
+
else:
|
256 |
+
for f in final_files:
|
257 |
+
final_code_updates.append(
|
258 |
+
gr.Code(
|
259 |
+
value=f["code"],
|
260 |
+
label=f["filename"],
|
261 |
+
language=f["language"]
|
262 |
+
)
|
263 |
+
)
|
264 |
+
|
265 |
+
# Yield final code blocks and hide thinking box (or show final thoughts/errors)
|
266 |
+
final_thought_update = gr.update(visible=True if current_thoughts else False, value=current_thoughts)
|
267 |
+
yield final_code_updates, final_thought_update
|
268 |
+
|
269 |
+
except HfHubHTTPError as http_err:
|
270 |
+
# Handle errors during the streaming call itself
|
271 |
+
error_message = (
|
272 |
+
f"**Error during code generation (HTTP Error):**\n"
|
273 |
+
f"Status Code: {http_err.response.status_code}\n"
|
274 |
+
f"Error: {http_err}\n"
|
275 |
+
f"This could be due to rate limits, invalid input, model errors, or token issues.\n"
|
276 |
+
f"Check the Hugging Face Space logs for more details."
|
277 |
+
)
|
278 |
+
print(f"ERROR: {error_message}")
|
279 |
+
print(traceback.format_exc())
|
280 |
+
# Yield error message in the output area
|
281 |
+
yield [gr.Markdown(error_message)], gr.update(visible=False) # Hide thinking box on error
|
282 |
|
283 |
except Exception as e:
|
284 |
+
error_message = (
|
285 |
+
f"**An unexpected error occurred during code generation:**\n"
|
286 |
+
f"Error Type: {type(e).__name__}\n"
|
287 |
+
f"Error: {e}\n\n"
|
288 |
+
f"**Traceback:**\n```\n{traceback.format_exc()}\n```\n"
|
289 |
+
f"Check the Hugging Face Space logs for more details."
|
290 |
+
)
|
291 |
+
print(f"ERROR: {error_message}")
|
292 |
+
# Yield error message in the output area
|
293 |
+
yield [gr.Markdown(error_message)], gr.update(visible=False) # Hide thinking box on error
|
294 |
+
|
295 |
|
296 |
+
# --- Gradio Interface ---
|
297 |
with gr.Blocks(css=".gradio-container { max-width: 90% !important; }") as demo:
|
298 |
gr.Markdown("# ✨ Website Code Generator ✨")
|
299 |
+
gr.Markdown("Describe the website you want. Code files will appear below. Uses `mistralai/Mixtral-8x7B-Instruct-v0.1` by default (check code to change).") # Update description
|
300 |
|
301 |
with gr.Row():
|
302 |
with gr.Column(scale=2):
|
303 |
+
prompt_input = gr.Textbox(label="Website Description", lines=6, placeholder="e.g., A simple landing page with a title, a paragraph, and a button linking to example.com")
|
304 |
+
backend_radio = gr.Radio(["Static (HTML/CSS/JS)", "Flask", "Node.js"], label="Backend Preference (Influences AI)", value="Static (HTML/CSS/JS)")
|
305 |
generate_button = gr.Button("✨ Generate Website Code", variant="primary")
|
306 |
|
307 |
+
with gr.Accordion("Advanced Settings", open=False):
|
308 |
+
max_tokens_slider = gr.Slider(512, 8192, value=4096, step=256, label="Max New Tokens") # Increased max potential tokens
|
309 |
+
temperature_slider = gr.Slider(0.0, 1.2, value=0.6, step=0.05, label="Temperature (0=deterministic, >1=more creative)") # Allow 0
|
310 |
+
top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P (Nucleus Sampling)")
|
311 |
+
|
312 |
with gr.Column(scale=3):
|
313 |
+
thinking_box = gr.Textbox(label="Model Activity / Thoughts", visible=False, interactive=False, lines=2)
|
314 |
+
# Use gr.Column to hold the dynamic code blocks
|
315 |
+
# Remove the update lambda, it's not needed for Column
|
316 |
+
file_outputs = gr.Column(elem_id="code-output-area")
|
317 |
|
|
|
|
|
|
|
|
|
318 |
|
319 |
generate_button.click(
|
320 |
fn=generate_code,
|
321 |
inputs=[prompt_input, backend_radio, max_tokens_slider, temperature_slider, top_p_slider],
|
322 |
+
# Output to the Column and the Textbox
|
323 |
outputs=[file_outputs, thinking_box],
|
324 |
+
# api_name="generate_code" # Optional: for API access
|
325 |
)
|
326 |
|
327 |
+
# --- Launch ---
|
328 |
if __name__ == "__main__":
|
329 |
+
print("Starting Gradio App...")
|
330 |
+
# Use queue() for handling multiple users and streaming
|
331 |
+
# Set share=False unless you specifically want a public link from local execution
|
332 |
+
# Set debug=True for more detailed Gradio errors locally (remove/set False for production)
|
333 |
+
demo.queue().launch(debug=False, share=False)
|
334 |
+
print("Gradio App Launched.")
|