|
from __future__ import annotations |
|
|
|
import logging |
|
import os |
|
|
|
import colorama |
|
import commentjson as cjson |
|
|
|
from modules import config |
|
|
|
from ..index_func import * |
|
from ..presets import * |
|
from ..utils import * |
|
from .base_model import BaseLLMModel, ModelType |
|
|
|
|
|
def get_model( |
|
model_name, |
|
lora_model_path=None, |
|
access_key=None, |
|
temperature=None, |
|
top_p=None, |
|
system_prompt=None, |
|
user_name="", |
|
original_model = None, |
|
common_model=None, |
|
common_tokenizer=None |
|
) -> BaseLLMModel: |
|
msg = i18n("模型设置为了:") + f" {model_name}" |
|
model_type = ModelType.get_type(model_name) |
|
lora_selector_visibility = False |
|
lora_choices = ["No LoRA"] |
|
dont_change_lora_selector = False |
|
if model_type != ModelType.OpenAI: |
|
config.local_embedding = True |
|
|
|
model = original_model |
|
chatbot = gr.Chatbot.update(label=model_name) |
|
try: |
|
if model_type == ModelType.OpenAI: |
|
logging.info(f"正在加载OpenAI模型: {model_name}") |
|
from .OpenAI import OpenAIClient |
|
access_key = os.environ.get("OPENAI_API_KEY", access_key) |
|
model = OpenAIClient( |
|
model_name=model_name, |
|
api_key=access_key, |
|
system_prompt=system_prompt, |
|
user_name=user_name, |
|
) |
|
elif model_type == ModelType.OpenAIInstruct: |
|
logging.info(f"正在加载OpenAI Instruct模型: {model_name}") |
|
from .OpenAIInstruct import OpenAI_Instruct_Client |
|
access_key = os.environ.get("OPENAI_API_KEY", access_key) |
|
model = OpenAI_Instruct_Client( |
|
model_name, api_key=access_key, user_name=user_name) |
|
elif model_type == ModelType.OpenAIVision: |
|
logging.info(f"正在加载OpenAI Vision模型: {model_name}") |
|
from .OpenAIVision import OpenAIVisionClient |
|
access_key = os.environ.get("OPENAI_API_KEY", access_key) |
|
model = OpenAIVisionClient( |
|
model_name, api_key=access_key, user_name=user_name) |
|
elif model_type == ModelType.ChatGLM: |
|
logging.info(f"正在加载ChatGLM模型: {model_name}") |
|
from .ChatGLM import ChatGLM_Client |
|
model = ChatGLM_Client(model_name, user_name=user_name) |
|
elif model_type == ModelType.LLaMA and lora_model_path == "": |
|
msg = f"现在请为 {model_name} 选择LoRA模型" |
|
logging.info(msg) |
|
lora_selector_visibility = True |
|
if os.path.isdir("lora"): |
|
lora_choices = ["No LoRA"] + get_file_names_by_pinyin("lora", filetypes=[""]) |
|
elif model_type == ModelType.LLaMA and lora_model_path != "": |
|
logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}") |
|
from .LLaMA import LLaMA_Client |
|
dont_change_lora_selector = True |
|
if lora_model_path == "No LoRA": |
|
lora_model_path = None |
|
msg += " + No LoRA" |
|
else: |
|
msg += f" + {lora_model_path}" |
|
model = LLaMA_Client( |
|
model_name, lora_model_path, user_name=user_name) |
|
elif model_type == ModelType.XMChat: |
|
from .XMChat import XMChat |
|
if os.environ.get("XMCHAT_API_KEY") != "": |
|
access_key = os.environ.get("XMCHAT_API_KEY") |
|
model = XMChat(api_key=access_key, user_name=user_name, common_model=common_model, common_tokenizer=common_tokenizer) |
|
elif model_type == ModelType.StableLM: |
|
from .StableLM import StableLM_Client |
|
model = StableLM_Client(model_name, user_name=user_name) |
|
elif model_type == ModelType.MOSS: |
|
from .MOSS import MOSS_Client |
|
model = MOSS_Client(model_name, user_name=user_name) |
|
elif model_type == ModelType.YuanAI: |
|
from .inspurai import Yuan_Client |
|
model = Yuan_Client(model_name, api_key=access_key, |
|
user_name=user_name, system_prompt=system_prompt) |
|
elif model_type == ModelType.Minimax: |
|
from .minimax import MiniMax_Client |
|
if os.environ.get("MINIMAX_API_KEY") != "": |
|
access_key = os.environ.get("MINIMAX_API_KEY") |
|
model = MiniMax_Client( |
|
model_name, api_key=access_key, user_name=user_name, system_prompt=system_prompt) |
|
elif model_type == ModelType.ChuanhuAgent: |
|
from .ChuanhuAgent import ChuanhuAgent_Client |
|
model = ChuanhuAgent_Client(model_name, access_key, user_name=user_name) |
|
msg = i18n("启用的工具:") + ", ".join([i.name for i in model.tools]) |
|
elif model_type == ModelType.GooglePaLM: |
|
from .GooglePaLM import Google_PaLM_Client |
|
access_key = os.environ.get("GOOGLE_PALM_API_KEY", access_key) |
|
model = Google_PaLM_Client( |
|
model_name, access_key, user_name=user_name) |
|
elif model_type == ModelType.LangchainChat: |
|
from .Azure import Azure_OpenAI_Client |
|
model = Azure_OpenAI_Client(model_name, user_name=user_name) |
|
elif model_type == ModelType.Midjourney: |
|
from .midjourney import Midjourney_Client |
|
mj_proxy_api_secret = os.getenv("MIDJOURNEY_PROXY_API_SECRET") |
|
model = Midjourney_Client( |
|
model_name, mj_proxy_api_secret, user_name=user_name) |
|
elif model_type == ModelType.Spark: |
|
from .spark import Spark_Client |
|
model = Spark_Client(model_name, os.getenv("SPARK_APPID"), os.getenv( |
|
"SPARK_API_KEY"), os.getenv("SPARK_API_SECRET"), user_name=user_name) |
|
elif model_type == ModelType.Claude: |
|
from .Claude import Claude_Client |
|
model = Claude_Client(model_name="claude-2", api_secret=os.getenv("CLAUDE_API_SECRET")) |
|
elif model_type == ModelType.Qwen: |
|
from .Qwen import Qwen_Client |
|
model = Qwen_Client(model_name, user_name=user_name) |
|
elif model_type == ModelType.ERNIE: |
|
from .ERNIE import ERNIE_Client |
|
model = ERNIE_Client(model_name, api_key=os.getenv("ERNIE_APIKEY"),secret_key=os.getenv("ERNIE_SECRETKEY")) |
|
elif model_type == ModelType.DALLE3: |
|
from .DALLE3 import OpenAI_DALLE3_Client |
|
access_key = os.environ.get("OPENAI_API_KEY", access_key) |
|
model = OpenAI_DALLE3_Client(model_name, api_key=access_key, user_name=user_name) |
|
elif model_type == ModelType.Unknown: |
|
raise ValueError(f"未知模型: {model_name}") |
|
logging.info(msg) |
|
except Exception as e: |
|
import traceback |
|
traceback.print_exc() |
|
msg = f"{STANDARD_ERROR_MSG}: {e}" |
|
presudo_key = hide_middle_chars(access_key) |
|
if original_model is not None and model is not None: |
|
model.history = original_model.history |
|
model.history_file_path = original_model.history_file_path |
|
if dont_change_lora_selector: |
|
return model, msg, chatbot, gr.update(), access_key, presudo_key |
|
else: |
|
return model, msg, chatbot, gr.Dropdown.update(choices=lora_choices, visible=lora_selector_visibility), access_key, presudo_key |
|
|
|
|
|
if __name__ == "__main__": |
|
with open("config.json", "r", encoding="utf-8") as f: |
|
openai_api_key = cjson.load(f)["openai_api_key"] |
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
client = get_model(model_name="chatglm-6b-int4") |
|
chatbot = [] |
|
stream = False |
|
|
|
logging.info(colorama.Back.GREEN + "测试账单功能" + colorama.Back.RESET) |
|
logging.info(client.billing_info()) |
|
|
|
logging.info(colorama.Back.GREEN + "测试问答" + colorama.Back.RESET) |
|
question = "巴黎是中国的首都吗?" |
|
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream): |
|
logging.info(i) |
|
logging.info(f"测试问答后history : {client.history}") |
|
|
|
logging.info(colorama.Back.GREEN + "测试记忆力" + colorama.Back.RESET) |
|
question = "我刚刚问了你什么问题?" |
|
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream): |
|
logging.info(i) |
|
logging.info(f"测试记忆力后history : {client.history}") |
|
|
|
logging.info(colorama.Back.GREEN + "测试重试功能" + colorama.Back.RESET) |
|
for i in client.retry(chatbot=chatbot, stream=stream): |
|
logging.info(i) |
|
logging.info(f"重试后history : {client.history}") |
|
|
|
|
|
|
|
|
|
|
|
|