A newer version of the Streamlit SDK is available:
1.54.0
SPARKNET Implementation Summary
Date: November 4, 2025
Status: Phase 1 Complete - Core Infrastructure Ready
Location: /home/mhamdan/SPARKNET
What Has Been Built
β Complete Components
1. Project Structure
SPARKNET/
βββ src/
β βββ agents/
β β βββ base_agent.py # Base agent class with LLM integration
β β βββ executor_agent.py # Task execution agent
β βββ llm/
β β βββ ollama_client.py # Ollama integration for local LLMs
β βββ tools/
β β βββ base_tool.py # Tool framework and registry
β β βββ file_tools.py # File operations (read, write, search, list)
β β βββ code_tools.py # Python/Bash execution
β β βββ gpu_tools.py # GPU monitoring and selection
β βββ utils/
β β βββ gpu_manager.py # Multi-GPU resource management
β β βββ logging.py # Structured logging
β β βββ config.py # Configuration management
β βββ workflow/ # (Reserved for future)
β βββ memory/ # (Reserved for future)
βββ configs/
β βββ system.yaml # System configuration
β βββ models.yaml # Model routing rules
β βββ agents.yaml # Agent definitions
βββ examples/
β βββ gpu_monitor.py # GPU monitoring demo
β βββ simple_task.py # Agent task demo (template)
βββ tests/ # (Reserved for unit tests)
βββ Dataset/ # Your data directory
βββ requirements.txt # Python dependencies
βββ setup.py # Package setup
βββ README.md # Full documentation
βββ GETTING_STARTED.md # Quick start guide
βββ test_basic.py # Basic functionality test
2. Core Systems
GPU Manager (src/utils/gpu_manager.py)
- Multi-GPU detection and monitoring
- Automatic GPU selection based on available memory
- VRAM tracking and temperature monitoring
- Context manager for safe GPU allocation
- Fallback GPU support
Ollama Client (src/llm/ollama_client.py)
- Connection to local Ollama server
- Model listing and pulling
- Text generation (streaming and non-streaming)
- Chat interface with conversation history
- Embedding generation
- Token counting
Tool System (src/tools/)
- 8 built-in tools:
file_reader- Read file contentsfile_writer- Write to filesfile_search- Search for files by patterndirectory_list- List directory contentspython_executor- Execute Python code (sandboxed)bash_executor- Execute bash commandsgpu_monitor- Monitor GPU statusgpu_select- Select best available GPU
- Tool registry for management
- Parameter validation
- Async execution support
Agent System (src/agents/)
BaseAgent- Abstract base with LLM integrationExecutorAgent- Task execution with tool usage- Message passing between agents
- Task management and tracking
- Tool integration
3. Configuration System
System Config (configs/system.yaml)
gpu:
primary: 0
fallback: [1, 2, 3]
ollama:
host: "localhost"
port: 11434
default_model: "llama3.2:latest"
memory:
vector_store: "chromadb"
embedding_model: "nomic-embed-text:latest"
Models Config (configs/models.yaml)
- Model routing based on task complexity
- Fallback chains
- Use case mappings
Agents Config (configs/agents.yaml)
- Agent definitions with system prompts
- Model assignments
- Interaction patterns
4. Available Ollama Models
| Model | Size | Status |
|---|---|---|
| gemma2:2b | 1.6 GB | β Downloaded |
| llama3.2:latest | 2.0 GB | β Downloaded |
| phi3:latest | 2.2 GB | β Downloaded |
| mistral:latest | 4.4 GB | β Downloaded |
| llama3.1:8b | 4.9 GB | β Downloaded |
| qwen2.5:14b | 9.0 GB | β Downloaded |
| nomic-embed-text | 274 MB | β Downloaded |
| mxbai-embed-large | 669 MB | β Downloaded |
5. GPU Infrastructure
Current GPU Status:
GPU 0: 0.32 GB free (97.1% used) - Primary but nearly full
GPU 1: 0.00 GB free (100% used) - Full
GPU 2: 6.87 GB free (37.5% used) - Good for small/mid models
GPU 3: 8.71 GB free (20.8% used) - Best available
Recommendation: Use GPU 3 for Ollama
CUDA_VISIBLE_DEVICES=3 ollama serve
Testing & Verification
β Tests Passed
GPU Monitoring Test (
examples/gpu_monitor.py)- β All 4 GPUs detected
- β Memory tracking working
- β Temperature monitoring active
- β Best GPU selection functional
Basic Functionality Test (
test_basic.py)- β GPU Manager initialized
- β Ollama client connected
- β LLM generation working ("Hello from SPARKNET!")
- β Tools executing successfully
How to Run Tests
cd /home/mhamdan/SPARKNET
# Test GPU monitoring
python examples/gpu_monitor.py
# Test basic functionality
python test_basic.py
# Test agent system (when ready)
python examples/simple_task.py
Key Features Implemented
1. Intelligent GPU Management
- Automatic detection of all 4 RTX 2080 Ti GPUs
- Real-time memory and utilization tracking
- Smart GPU selection based on availability
- Fallback mechanisms
2. Local LLM Integration
- Complete Ollama integration
- Support for 9 different models
- Streaming and non-streaming generation
- Chat and embedding capabilities
3. Extensible Tool System
- Easy tool creation with
BaseTool - Automatic parameter validation
- Tool registry for centralized management
- Safe sandboxed execution
4. Agent Framework
- Abstract base agent for easy extension
- Built-in LLM integration
- Message passing system
- Task tracking and management
5. Configuration Management
- YAML-based configuration
- Pydantic validation
- Environment-specific settings
- Model routing rules
What's Next - Roadmap
Phase 2: Multi-Agent Orchestration (Next)
Priority 1 - Additional Agents:
src/agents/
βββ planner_agent.py # Task decomposition and planning
βββ critic_agent.py # Output validation and feedback
βββ memory_agent.py # Context and knowledge management
βββ coordinator_agent.py # Multi-agent orchestration
Priority 2 - Agent Communication:
- Message bus for inter-agent communication
- Event-driven architecture
- Workflow state management
Phase 3: Advanced Features
Memory System (src/memory/):
- ChromaDB integration
- Vector-based episodic memory
- Semantic memory for knowledge
- Memory retrieval and summarization
Workflow Engine (src/workflow/):
- Task graph construction
- Dependency resolution
- Parallel execution
- Progress tracking
Learning Module:
- Feedback collection
- Strategy optimization
- A/B testing framework
- Performance metrics
Phase 4: Optimization & Production
Multi-GPU Parallelization:
- Distribute agents across GPUs
- Model sharding for large models
- Efficient memory management
Testing & Quality:
- Unit tests (pytest)
- Integration tests
- Performance benchmarks
- Documentation
Monitoring Dashboard:
- Real-time agent status
- GPU utilization graphs
- Task execution logs
- Performance metrics
Usage Examples
Example 1: Simple GPU Monitoring
from src.utils.gpu_manager import get_gpu_manager
gpu_manager = get_gpu_manager()
print(gpu_manager.monitor())
Example 2: LLM Generation
from src.llm.ollama_client import OllamaClient
client = OllamaClient(default_model="gemma2:2b")
response = client.generate(
prompt="Explain AI in one sentence.",
temperature=0.7
)
print(response)
Example 3: Using Tools
from src.tools.gpu_tools import GPUMonitorTool
gpu_tool = GPUMonitorTool()
result = await gpu_tool.execute()
print(result.output)
Example 4: Agent Task Execution (Template)
from src.llm.ollama_client import OllamaClient
from src.agents.executor_agent import ExecutorAgent
from src.agents.base_agent import Task
from src.tools import register_default_tools
# Setup
ollama_client = OllamaClient()
registry = register_default_tools()
# Create agent
agent = ExecutorAgent(llm_client=ollama_client, model="gemma2:2b")
agent.set_tool_registry(registry)
# Execute task
task = Task(
id="task_1",
description="Check GPU memory and report status"
)
result = await agent.process_task(task)
print(result.result)
Dependencies Installed
Core packages:
pynvml- GPU monitoringloguru- Structured loggingpydantic- Configuration validationollama- LLM integrationpyyaml- Configuration files
To install all dependencies:
pip install -r requirements.txt
Important Notes
GPU Configuration
β οΈ Important: Ollama must be started on a GPU with sufficient memory.
Current recommendation:
# Stop any running Ollama instance
pkill -f "ollama serve"
# Start on GPU 3 (has 8.71 GB free)
CUDA_VISIBLE_DEVICES=3 ollama serve
Model Selection
Choose models based on available GPU memory:
- 1-2 GB free: gemma2:2b, llama3.2:latest, phi3
- 4-5 GB free: mistral:latest, llama3.1:8b
- 8+ GB free: qwen2.5:14b
Configuration
Edit configs/system.yaml to match your setup:
gpu:
primary: 3 # Change to your preferred GPU
fallback: [2, 1, 0]
Success Metrics
β Phase 1 Objectives Achieved:
- Complete project structure
- GPU manager with 4-GPU support
- Ollama client integration
- Base agent framework
- 8 essential tools
- Configuration system
- Basic testing and validation
Files Created
Core Implementation (15 files):
src/agents/base_agent.py(367 lines)src/agents/executor_agent.py(181 lines)src/llm/ollama_client.py(268 lines)src/tools/base_tool.py(232 lines)src/tools/file_tools.py(205 lines)src/tools/code_tools.py(135 lines)src/tools/gpu_tools.py(123 lines)src/utils/gpu_manager.py(245 lines)src/utils/logging.py(64 lines)src/utils/config.py(110 lines)
Configuration (3 files):
configs/system.yamlconfigs/models.yamlconfigs/agents.yaml
Setup & Docs (7 files):
requirements.txtsetup.pyREADME.mdGETTING_STARTED.md.gitignoretest_basic.pyIMPLEMENTATION_SUMMARY.md(this file)
Examples (2 files):
examples/gpu_monitor.pyexamples/simple_task.py(template)
Total: ~2,000 lines of production code
Next Steps for You
Immediate (Day 1)
Familiarize with the system:
cd /home/mhamdan/SPARKNET python examples/gpu_monitor.py python test_basic.pyConfigure Ollama for optimal GPU:
pkill -f "ollama serve" CUDA_VISIBLE_DEVICES=3 ollama serveRead documentation:
GETTING_STARTED.md- Quick startREADME.md- Full documentation
Short-term (Week 1)
Implement PlannerAgent:
- Task decomposition logic
- Dependency analysis
- Execution planning
Implement CriticAgent:
- Output validation
- Quality assessment
- Feedback generation
Create real-world examples:
- Data analysis workflow
- Code generation task
- Research and synthesis
Medium-term (Month 1)
Memory system:
- ChromaDB integration
- Vector embeddings
- Contextual retrieval
Workflow engine:
- Task graphs
- Parallel execution
- State management
Testing suite:
- Unit tests for all components
- Integration tests
- Performance benchmarks
Support
For issues or questions:
- Check
README.mdfor detailed documentation - Review
GETTING_STARTED.mdfor common tasks - Examine
configs/for configuration options - Look at
examples/for usage patterns
SPARKNET Phase 1: Complete β
You now have a fully functional foundation for building autonomous AI agent systems with local LLM integration and multi-GPU support!
Built with: Python 3.12, Ollama, PyTorch, CUDA 12.9, 4x RTX 2080 Ti