SPARKNET / docs /archive /IMPLEMENTATION_SUMMARY.md
MHamdan's picture
Initial commit: SPARKNET framework
a9dc537

A newer version of the Streamlit SDK is available: 1.54.0

Upgrade

SPARKNET Implementation Summary

Date: November 4, 2025 Status: Phase 1 Complete - Core Infrastructure Ready Location: /home/mhamdan/SPARKNET

What Has Been Built

βœ… Complete Components

1. Project Structure

SPARKNET/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ agents/
β”‚   β”‚   β”œβ”€β”€ base_agent.py        # Base agent class with LLM integration
β”‚   β”‚   └── executor_agent.py    # Task execution agent
β”‚   β”œβ”€β”€ llm/
β”‚   β”‚   └── ollama_client.py     # Ollama integration for local LLMs
β”‚   β”œβ”€β”€ tools/
β”‚   β”‚   β”œβ”€β”€ base_tool.py         # Tool framework and registry
β”‚   β”‚   β”œβ”€β”€ file_tools.py        # File operations (read, write, search, list)
β”‚   β”‚   β”œβ”€β”€ code_tools.py        # Python/Bash execution
β”‚   β”‚   └── gpu_tools.py         # GPU monitoring and selection
β”‚   β”œβ”€β”€ utils/
β”‚   β”‚   β”œβ”€β”€ gpu_manager.py       # Multi-GPU resource management
β”‚   β”‚   β”œβ”€β”€ logging.py           # Structured logging
β”‚   β”‚   └── config.py            # Configuration management
β”‚   β”œβ”€β”€ workflow/                # (Reserved for future)
β”‚   └── memory/                  # (Reserved for future)
β”œβ”€β”€ configs/
β”‚   β”œβ”€β”€ system.yaml              # System configuration
β”‚   β”œβ”€β”€ models.yaml              # Model routing rules
β”‚   └── agents.yaml              # Agent definitions
β”œβ”€β”€ examples/
β”‚   β”œβ”€β”€ gpu_monitor.py           # GPU monitoring demo
β”‚   └── simple_task.py           # Agent task demo (template)
β”œβ”€β”€ tests/                       # (Reserved for unit tests)
β”œβ”€β”€ Dataset/                     # Your data directory
β”œβ”€β”€ requirements.txt             # Python dependencies
β”œβ”€β”€ setup.py                     # Package setup
β”œβ”€β”€ README.md                    # Full documentation
β”œβ”€β”€ GETTING_STARTED.md           # Quick start guide
└── test_basic.py                # Basic functionality test

2. Core Systems

GPU Manager (src/utils/gpu_manager.py)

  • Multi-GPU detection and monitoring
  • Automatic GPU selection based on available memory
  • VRAM tracking and temperature monitoring
  • Context manager for safe GPU allocation
  • Fallback GPU support

Ollama Client (src/llm/ollama_client.py)

  • Connection to local Ollama server
  • Model listing and pulling
  • Text generation (streaming and non-streaming)
  • Chat interface with conversation history
  • Embedding generation
  • Token counting

Tool System (src/tools/)

  • 8 built-in tools:
    1. file_reader - Read file contents
    2. file_writer - Write to files
    3. file_search - Search for files by pattern
    4. directory_list - List directory contents
    5. python_executor - Execute Python code (sandboxed)
    6. bash_executor - Execute bash commands
    7. gpu_monitor - Monitor GPU status
    8. gpu_select - Select best available GPU
  • Tool registry for management
  • Parameter validation
  • Async execution support

Agent System (src/agents/)

  • BaseAgent - Abstract base with LLM integration
  • ExecutorAgent - Task execution with tool usage
  • Message passing between agents
  • Task management and tracking
  • Tool integration

3. Configuration System

System Config (configs/system.yaml)

gpu:
  primary: 0
  fallback: [1, 2, 3]

ollama:
  host: "localhost"
  port: 11434
  default_model: "llama3.2:latest"

memory:
  vector_store: "chromadb"
  embedding_model: "nomic-embed-text:latest"

Models Config (configs/models.yaml)

  • Model routing based on task complexity
  • Fallback chains
  • Use case mappings

Agents Config (configs/agents.yaml)

  • Agent definitions with system prompts
  • Model assignments
  • Interaction patterns

4. Available Ollama Models

Model Size Status
gemma2:2b 1.6 GB βœ“ Downloaded
llama3.2:latest 2.0 GB βœ“ Downloaded
phi3:latest 2.2 GB βœ“ Downloaded
mistral:latest 4.4 GB βœ“ Downloaded
llama3.1:8b 4.9 GB βœ“ Downloaded
qwen2.5:14b 9.0 GB βœ“ Downloaded
nomic-embed-text 274 MB βœ“ Downloaded
mxbai-embed-large 669 MB βœ“ Downloaded

5. GPU Infrastructure

Current GPU Status:

GPU 0: 0.32 GB free (97.1% used) - Primary but nearly full
GPU 1: 0.00 GB free (100% used) - Full
GPU 2: 6.87 GB free (37.5% used) - Good for small/mid models
GPU 3: 8.71 GB free (20.8% used) - Best available

Recommendation: Use GPU 3 for Ollama

CUDA_VISIBLE_DEVICES=3 ollama serve

Testing & Verification

βœ… Tests Passed

  1. GPU Monitoring Test (examples/gpu_monitor.py)

    • βœ“ All 4 GPUs detected
    • βœ“ Memory tracking working
    • βœ“ Temperature monitoring active
    • βœ“ Best GPU selection functional
  2. Basic Functionality Test (test_basic.py)

    • βœ“ GPU Manager initialized
    • βœ“ Ollama client connected
    • βœ“ LLM generation working ("Hello from SPARKNET!")
    • βœ“ Tools executing successfully

How to Run Tests

cd /home/mhamdan/SPARKNET

# Test GPU monitoring
python examples/gpu_monitor.py

# Test basic functionality
python test_basic.py

# Test agent system (when ready)
python examples/simple_task.py

Key Features Implemented

1. Intelligent GPU Management

  • Automatic detection of all 4 RTX 2080 Ti GPUs
  • Real-time memory and utilization tracking
  • Smart GPU selection based on availability
  • Fallback mechanisms

2. Local LLM Integration

  • Complete Ollama integration
  • Support for 9 different models
  • Streaming and non-streaming generation
  • Chat and embedding capabilities

3. Extensible Tool System

  • Easy tool creation with BaseTool
  • Automatic parameter validation
  • Tool registry for centralized management
  • Safe sandboxed execution

4. Agent Framework

  • Abstract base agent for easy extension
  • Built-in LLM integration
  • Message passing system
  • Task tracking and management

5. Configuration Management

  • YAML-based configuration
  • Pydantic validation
  • Environment-specific settings
  • Model routing rules

What's Next - Roadmap

Phase 2: Multi-Agent Orchestration (Next)

Priority 1 - Additional Agents:

src/agents/
β”œβ”€β”€ planner_agent.py      # Task decomposition and planning
β”œβ”€β”€ critic_agent.py       # Output validation and feedback
β”œβ”€β”€ memory_agent.py       # Context and knowledge management
└── coordinator_agent.py  # Multi-agent orchestration

Priority 2 - Agent Communication:

  • Message bus for inter-agent communication
  • Event-driven architecture
  • Workflow state management

Phase 3: Advanced Features

Memory System (src/memory/):

  • ChromaDB integration
  • Vector-based episodic memory
  • Semantic memory for knowledge
  • Memory retrieval and summarization

Workflow Engine (src/workflow/):

  • Task graph construction
  • Dependency resolution
  • Parallel execution
  • Progress tracking

Learning Module:

  • Feedback collection
  • Strategy optimization
  • A/B testing framework
  • Performance metrics

Phase 4: Optimization & Production

Multi-GPU Parallelization:

  • Distribute agents across GPUs
  • Model sharding for large models
  • Efficient memory management

Testing & Quality:

  • Unit tests (pytest)
  • Integration tests
  • Performance benchmarks
  • Documentation

Monitoring Dashboard:

  • Real-time agent status
  • GPU utilization graphs
  • Task execution logs
  • Performance metrics

Usage Examples

Example 1: Simple GPU Monitoring

from src.utils.gpu_manager import get_gpu_manager

gpu_manager = get_gpu_manager()
print(gpu_manager.monitor())

Example 2: LLM Generation

from src.llm.ollama_client import OllamaClient

client = OllamaClient(default_model="gemma2:2b")
response = client.generate(
    prompt="Explain AI in one sentence.",
    temperature=0.7
)
print(response)

Example 3: Using Tools

from src.tools.gpu_tools import GPUMonitorTool

gpu_tool = GPUMonitorTool()
result = await gpu_tool.execute()
print(result.output)

Example 4: Agent Task Execution (Template)

from src.llm.ollama_client import OllamaClient
from src.agents.executor_agent import ExecutorAgent
from src.agents.base_agent import Task
from src.tools import register_default_tools

# Setup
ollama_client = OllamaClient()
registry = register_default_tools()

# Create agent
agent = ExecutorAgent(llm_client=ollama_client, model="gemma2:2b")
agent.set_tool_registry(registry)

# Execute task
task = Task(
    id="task_1",
    description="Check GPU memory and report status"
)
result = await agent.process_task(task)
print(result.result)

Dependencies Installed

Core packages:

  • pynvml - GPU monitoring
  • loguru - Structured logging
  • pydantic - Configuration validation
  • ollama - LLM integration
  • pyyaml - Configuration files

To install all dependencies:

pip install -r requirements.txt

Important Notes

GPU Configuration

⚠️ Important: Ollama must be started on a GPU with sufficient memory.

Current recommendation:

# Stop any running Ollama instance
pkill -f "ollama serve"

# Start on GPU 3 (has 8.71 GB free)
CUDA_VISIBLE_DEVICES=3 ollama serve

Model Selection

Choose models based on available GPU memory:

  • 1-2 GB free: gemma2:2b, llama3.2:latest, phi3
  • 4-5 GB free: mistral:latest, llama3.1:8b
  • 8+ GB free: qwen2.5:14b

Configuration

Edit configs/system.yaml to match your setup:

gpu:
  primary: 3  # Change to your preferred GPU
  fallback: [2, 1, 0]

Success Metrics

βœ… Phase 1 Objectives Achieved:

  • Complete project structure
  • GPU manager with 4-GPU support
  • Ollama client integration
  • Base agent framework
  • 8 essential tools
  • Configuration system
  • Basic testing and validation

Files Created

Core Implementation (15 files):

  • src/agents/base_agent.py (367 lines)
  • src/agents/executor_agent.py (181 lines)
  • src/llm/ollama_client.py (268 lines)
  • src/tools/base_tool.py (232 lines)
  • src/tools/file_tools.py (205 lines)
  • src/tools/code_tools.py (135 lines)
  • src/tools/gpu_tools.py (123 lines)
  • src/utils/gpu_manager.py (245 lines)
  • src/utils/logging.py (64 lines)
  • src/utils/config.py (110 lines)

Configuration (3 files):

  • configs/system.yaml
  • configs/models.yaml
  • configs/agents.yaml

Setup & Docs (7 files):

  • requirements.txt
  • setup.py
  • README.md
  • GETTING_STARTED.md
  • .gitignore
  • test_basic.py
  • IMPLEMENTATION_SUMMARY.md (this file)

Examples (2 files):

  • examples/gpu_monitor.py
  • examples/simple_task.py (template)

Total: ~2,000 lines of production code

Next Steps for You

Immediate (Day 1)

  1. Familiarize with the system:

    cd /home/mhamdan/SPARKNET
    python examples/gpu_monitor.py
    python test_basic.py
    
  2. Configure Ollama for optimal GPU:

    pkill -f "ollama serve"
    CUDA_VISIBLE_DEVICES=3 ollama serve
    
  3. Read documentation:

    • GETTING_STARTED.md - Quick start
    • README.md - Full documentation

Short-term (Week 1)

  1. Implement PlannerAgent:

    • Task decomposition logic
    • Dependency analysis
    • Execution planning
  2. Implement CriticAgent:

    • Output validation
    • Quality assessment
    • Feedback generation
  3. Create real-world examples:

    • Data analysis workflow
    • Code generation task
    • Research and synthesis

Medium-term (Month 1)

  1. Memory system:

    • ChromaDB integration
    • Vector embeddings
    • Contextual retrieval
  2. Workflow engine:

    • Task graphs
    • Parallel execution
    • State management
  3. Testing suite:

    • Unit tests for all components
    • Integration tests
    • Performance benchmarks

Support

For issues or questions:

  1. Check README.md for detailed documentation
  2. Review GETTING_STARTED.md for common tasks
  3. Examine configs/ for configuration options
  4. Look at examples/ for usage patterns

SPARKNET Phase 1: Complete βœ…

You now have a fully functional foundation for building autonomous AI agent systems with local LLM integration and multi-GPU support!

Built with: Python 3.12, Ollama, PyTorch, CUDA 12.9, 4x RTX 2080 Ti