mcp-extension-progressive-disclosure / docs /guide_progressive_disclosure_implementation.md
timemasheen's picture
Update protocol spec and guide to v2.1 - Nov 30, 2025 (hackathon submission)
daa3e26

A newer version of the Gradio SDK is available: 6.1.0

Upgrade

MCP Progressive Disclosure: Implementation Guide

Extension Name: Model Context Protocol (MCP) - Progressive Disclosure for Tool Descriptions
Companion Specification: spec_mcp_progressive_disclosure_v2_0.md
Version: 2.1
Last Updated: 2025-11-30


Overview

This guide provides practical advice for implementing the MCP Progressive Disclosure extension for token-efficient tool description delivery. It covers common pitfalls, proven strategies, and real-world learnings from production deployments.

If you're new here:

  1. Read the MCP Progressive Disclosure specification first for protocol requirements
  2. Come back here for implementation details and troubleshooting
  3. Use the code examples as starting points

What is MCP Progressive Disclosure?
An extension to the Model Context Protocol (MCP) that enables servers to expose minimal tool descriptions initially, then provide full documentation on-demand through a standardized resource pattern.


Quick Start

Server-Side (5 Steps)

  1. Create tool descriptions directory
   mkdir tool_descriptions/
  1. Extract tool descriptions to JSON files

    // tool_descriptions/my_tool.json
    {
      "name": "my_tool",
      "description": "Full detailed description...",
      "inputSchema": { /* complete schema */ },
      "examples": [ /* usage examples */ ]
    }
    
  2. Implement resource listing

    • Expose tool_descriptions resource via resources/list
    • Include clear workflow guidance in description
  3. Implement resource reading

    • Parse ?tools= query parameter
    • Load requested tool descriptions
    • Authorize tools for session
    • Return JSON with descriptions
  4. Enforce authorization

    • Check authorization before tool execution
    • Return clear error if not authorized

Agent-Side (2 Steps)

  1. Enhance system prompt

    • Detect tool_descriptions resource
    • Explain two-stage workflow
    • Provide example URI syntax
  2. Test the workflow

    • Verify LLM picks tools from tools/list
    • Verify LLM fetches specific tools
    • Verify LLM calls tools successfully

The Core Challenge: Tool Selection vs Tool Usage

The Problem

The most common implementation issue is LLMs misunderstanding when to fetch tool descriptions. They consistently try one of two wrong approaches:

Anti-Pattern 1: Fetch Everything First

User: "Get some data"
❌ LLM: read_resource(resource_uri="resource:///tool_descriptions")
   Error: Must specify tools parameter
βœ… LLM: read_resource(resource_uri="resource:///tool_descriptions?tools=get_data")
   Success, then calls tool

Anti-Pattern 2: Skip Fetching Entirely

User: "Get some data"
❌ LLM: get_data(query="data")
   Error: Tool description required
βœ… LLM: read_resource(resource_uri="resource:///tool_descriptions?tools=get_data")
βœ… LLM: get_data(query="data")

Why This Happens

LLMs interpret "fetch descriptions before calling tools" as "fetch descriptions to help me decide which tool to use" rather than "fetch descriptions to learn how to use the tool I've already chosen."

The Cognitive Model:

  • Stage 1 (tools/list): WHAT does this tool do? β†’ Decision Point
  • Stage 2 (tool_descriptions): HOW do I use this tool? β†’ Implementation Details

LLMs need explicit guidance that Stage 1 descriptions are sufficient for selection.


Server Implementation

1. Storage Structure

Recommended:

project/
β”œβ”€β”€ tool_descriptions/
β”‚   β”œβ”€β”€ tool_one.json
β”‚   β”œβ”€β”€ tool_two.json
β”‚   └── tool_three.json
β”œβ”€β”€ tool_description_loader.py
β”œβ”€β”€ session_auth.py
└── server.py

tool_descriptions/tool_one.json:

{
  "name": "tool_one",
  "description": "Complete description with all context needed for reliable use",
  "inputSchema": {
    "type": "object",
    "properties": {
      "param1": {
        "type": "string",
        "description": "First parameter"
      },
      "param2": {
        "type": "integer",
        "description": "Second parameter",
        "default": 10
      }
    },
    "required": ["param1"]
  },
  "examples": [
    {
      "description": "Basic usage",
      "input": {"param1": "value"},
      "explanation": "Simplest form with just required parameter"
    },
    {
      "description": "With optional parameter",
      "input": {"param1": "value", "param2": 20},
      "explanation": "Override default for param2"
    }
  ],
  "usage_guidance": {
    "common_patterns": [
      "For X scenario, use param1='special_value'",
      "When Y, set param2 higher than default"
    ],
    "important_notes": [
      "Parameter validation happens server-side",
      "Results are paginated by default"
    ]
  },
  "error_guidance": {
    "common_errors": [
      {
        "error": "INVALID_PARAM1",
        "cause": "param1 must match pattern X",
        "solution": "Ensure param1 follows format Y"
      }
    ]
  }
}

2. Tool Description Loader

tool_description_loader.py:

from pathlib import Path
import json
from typing import Dict, Optional, List

class ToolDescriptionLoader:
    """Loads and caches tool descriptions from JSON files"""
    
    def __init__(self, descriptions_dir: Path):
        self.descriptions_dir = descriptions_dir
        self._cache: Dict[str, dict] = {}
    
    def load(self, tool_name: str) -> Optional[dict]:
        """Load a single tool description"""
        if tool_name in self._cache:
            return self._cache[tool_name]
        
        desc_file = self.descriptions_dir / f"{tool_name}.json"
        if not desc_file.exists():
            return None
        
        with open(desc_file, 'r', encoding='utf-8') as f:
            description = json.load(f)
        
        self._cache[tool_name] = description
        return description
    
    def load_multiple(self, tool_names: List[str]) -> Dict[str, dict]:
        """Load multiple tool descriptions"""
        descriptions = {}
        for tool_name in tool_names:
            desc = self.load(tool_name)
            if desc:
                descriptions[tool_name] = desc
            else:
                descriptions[tool_name] = {
                    "error": f"Tool '{tool_name}' not found",
                    "available_tools": self.list_available()
                }
        return descriptions
    
    def list_available(self) -> List[str]:
        """Get list of available tool descriptions"""
        if not self.descriptions_dir.exists():
            return []
        return [f.stem for f in self.descriptions_dir.glob("*.json")]

3. Session Authorization

session_auth.py:

from typing import Dict, Set
import time
import logging

logger = logging.getLogger(__name__)

class SessionAuthorization:
    """Manages per-session tool authorization state"""
    
    def __init__(self):
        self._sessions: Dict[int, Dict] = {}
        # session_id -> {
        #     'authorized_tools': Set[str],
        #     'created_at': float,
        #     'last_activity': float
        # }
    
    def get_session_id(self, session) -> int:
        """Get unique session identifier from MCP session object"""
        return id(session)
    
    def authorize_tool(self, session, tool_name: str):
        """Mark a tool as authorized for this session"""
        session_id = self.get_session_id(session)
        
        if session_id not in self._sessions:
            self._sessions[session_id] = {
                'authorized_tools': set(),
                'created_at': time.time(),
                'last_activity': time.time()
            }
        
        self._sessions[session_id]['authorized_tools'].add(tool_name)
        self._sessions[session_id]['last_activity'] = time.time()
        logger.info(f"Session {session_id}: Authorized tool '{tool_name}'")
    
    def is_authorized(self, session, tool_name: str) -> bool:
        """Check if tool has been authorized in this session"""
        session_id = self.get_session_id(session)
        
        if session_id not in self._sessions:
            return False
        
        self._sessions[session_id]['last_activity'] = time.time()
        return tool_name in self._sessions[session_id]['authorized_tools']
    
    def cleanup_stale_sessions(self, max_age_seconds: int = 3600):
        """Remove inactive sessions"""
        now = time.time()
        stale = [
            sid for sid, data in self._sessions.items()
            if now - data['last_activity'] > max_age_seconds
        ]
        for session_id in stale:
            del self._sessions[session_id]
        if stale:
            logger.info(f"Cleaned up {len(stale)} stale session(s)")

4. Server Resource Handlers

server.py:

from mcp.server import Server
from mcp.types import Resource, Tool
from urllib.parse import urlparse, parse_qs
from pathlib import Path
import json

app = Server("my-server")

# Initialize modules
session_auth = SessionAuthorization()
tool_loader = ToolDescriptionLoader(Path(__file__).parent / "tool_descriptions")

@app.list_resources()
async def list_resources() -> list[Resource]:
    """List available resources including tool_descriptions"""
    return [
        Resource(
            uri="resource:///tool_descriptions",
            name="Tool Descriptions - Required for tool use",
            description=(
                "WORKFLOW:\n"
                "\n"
                "Step 1: PICK which tool you need from tools/list (descriptions show WHAT each tool does)\n"
                "Step 2: FETCH that tool's full description from this resource (learn HOW to use it)\n"
                "        Example: resource:///tool_descriptions?tools=TOOL_NAME\n"
                "Step 3: CALL the tool with parameters you learned\n"
                "\n"
                "IMPORTANT: You CANNOT call a tool until you fetch its description.\n"
                "\n"
                "The short descriptions in tools/list are SUFFICIENT for choosing the right tool.\n"
                "This resource provides parameters, examples, and authorizes the tool for use.\n"
                "\n"
                "MUST include ?tools=TOOL_NAME (base URI without parameter will error)."
            ),
            mimeType="application/json"
        )
    ]

@app.read_resource()
async def read_resource(uri: str) -> str:
    """Read tool descriptions resource"""
    uri = str(uri)
    parsed = urlparse(uri)
    
    # Parse query parameters
    query_params = parse_qs(parsed.query)
    tools_param = query_params.get('tools', [])
    
    # Require tools parameter
    if not tools_param:
        error = {
            "error": {
                "code": "MISSING_TOOL_SELECTION",
                "message": "You must specify one or more tool names in the 'tools' parameter.",
                "examples": [
                    "resource:///tool_descriptions?tools=tool_one",
                    "resource:///tool_descriptions?tools=tool_one,tool_two"
                ],
                "available_tools": tool_loader.list_available()
            }
        }
        return json.dumps(error, indent=2)
    
    # Parse comma-separated tool names
    requested_tools = [t.strip() for t in tools_param[0].split(',')]
    
    # Get session for authorization
    try:
        session = app.request_context.session
    except LookupError:
        session = None
    
    # Load descriptions
    descriptions = tool_loader.load_multiple(requested_tools)
    
    # Authorize tools for this session
    if session:
        for tool_name in descriptions.keys():
            if "error" not in descriptions[tool_name]:
                session_auth.authorize_tool(session, tool_name)
    
    return json.dumps(descriptions, indent=2)

@app.list_tools()
async def list_tools() -> list[Tool]:
    """List tools with minimal descriptions"""
    return [
        Tool(
            name="tool_one",
            description="Brief description of what this tool does - sufficient for selection",
            inputSchema={
                "type": "object",
                "additionalProperties": True
            }
        ),
        Tool(
            name="tool_two",
            description="Brief description of what this tool does - sufficient for selection",
            inputSchema={
                "type": "object",
                "additionalProperties": True
            }
        )
    ]

@app.call_tool()
async def call_tool(name: str, arguments: dict):
    """Handle tool calls with authorization check"""
    # Get session
    try:
        session = app.request_context.session
    except LookupError:
        return error_response("Tool call outside session context")
    
    # Check authorization
    if not session_auth.is_authorized(session, name):
        error = {
            "error": {
                "code": "TOOL_DESCRIPTION_REQUIRED",
                "message": f"Tool '{name}' requires fetching its description before use.",
                "instructions": [
                    f"1. Fetch: read_resource(resource_uri=\"resource:///tool_descriptions?tools={name}\")",
                    "2. Review the parameters and examples",
                    "3. Then call the tool"
                ],
                "resource_uri": f"resource:///tool_descriptions?tools={name}"
            }
        }
        return [TextContent(type="text", text=json.dumps(error, indent=2))]
    
    # Tool is authorized - execute
    if name == "tool_one":
        result = handle_tool_one(arguments)
    elif name == "tool_two":
        result = handle_tool_two(arguments)
    else:
        result = {"error": f"Unknown tool: {name}"}
    
    return [TextContent(type="text", text=json.dumps(result, indent=2))]

Agent Implementation

System Prompt Enhancement

Key Strategy: Auto-detect progressive disclosure servers and provide explicit workflow guidance.

conversation.py or similar:

def build_system_prompt(self, tools, resources):
    """Build system prompt with progressive disclosure detection"""
    
    # Check if any resource is tool_descriptions
    has_progressive_disclosure = any(
        'tool_descriptions' in r.get('uri', '') 
        for r in resources
    )
    
    # Build tool list with descriptions
    tool_list = "\n".join([
        f"  - {t['name']}: {t.get('description', 'No description')}"
        for t in tools
    ])
    
    prompt = f"""You are a helpful assistant with access to these tools:

{tool_list}

Use tools when needed to answer questions."""
    
    if has_progressive_disclosure:
        prompt += """

IMPORTANT - Tool Usage Workflow:
This server uses progressive disclosure for tools. Follow this exact workflow:

1. PICK the right tool based on the descriptions above (they tell you WHAT each tool does)
2. FETCH the full tool description using read_resource with the specific tool name
   Example: read_resource(resource_uri="resource:///tool_descriptions?tools=TOOL_NAME")
3. CALL the tool using the parameters you just learned

DO NOT try to fetch tool_descriptions without specifying which tool you want (?tools=TOOL_NAME).
The tool descriptions above are sufficient for choosing which tool you need.
You fetch the full description to learn the parameters and authorize the tool."""
    
    return prompt

Resource Description Wording

Proven Effective Pattern

Based on production testing, this structure achieves highest LLM compliance:

WORKFLOW:

Step 1: PICK which tool you need from tools/list based on SHORT descriptions
Step 2: FETCH full description: resource:///tool_descriptions?tools=TOOL_NAME
Step 3: CALL the tool with parameters you learned

IMPORTANT: You CANNOT call a tool until you fetch its description.

The SHORT descriptions tell you WHICH tool to use (sufficient for selection).
This resource tells you HOW to use it (parameters, examples) and authorizes it.

MUST include ?tools=TOOL_NAME (base URI without tools will error).

What Makes This Work

  1. Sequential Steps: Clear 1-2-3 progression
  2. Separation of Concerns: WHICH vs HOW distinction
  3. Mandatory Language: "CANNOT" not "should not"
  4. Concrete Example: Shows exact URI format
  5. Prohibition: States what will fail
  6. Rationale: Explains why pattern exists (selection vs parameters)

What DOESN'T Work

❌ Too brief: "Fetch descriptions before calling tools"

  • Problem: Ambiguous when to fetch

❌ Too verbose: Multiple paragraphs of explanation

  • Problem: LLMs skip/skim long descriptions

❌ No examples: Abstract description only

  • Problem: LLMs don't know exact syntax

❌ Missing prohibition: Doesn't say what fails

  • Problem: LLMs try base URI without tools parameter

Testing Strategy

1. Unit Tests

Test each component independently:

def test_tool_loader():
    loader = ToolDescriptionLoader(Path("tool_descriptions"))
    
    # Test single load
    desc = loader.load("tool_one")
    assert desc['name'] == "tool_one"
    assert 'inputSchema' in desc
    
    # Test multiple load
    descs = loader.load_multiple(["tool_one", "tool_two"])
    assert len(descs) == 2
    
    # Test missing tool
    descs = loader.load_multiple(["nonexistent"])
    assert "error" in descs["nonexistent"]

def test_session_auth():
    auth = SessionAuthorization()
    
    # Mock session
    class MockSession:
        pass
    session = MockSession()
    
    # Test authorization flow
    assert not auth.is_authorized(session, "tool_one")
    auth.authorize_tool(session, "tool_one")
    assert auth.is_authorized(session, "tool_one")
    
    # Test session isolation
    session2 = MockSession()
    assert not auth.is_authorized(session2, "tool_one")

2. Integration Tests

Test the full workflow:

async def test_progressive_disclosure_workflow():
    # Connect to server
    server = await connect_mcp_server()
    
    # 1. List resources - should see tool_descriptions
    resources = await server.list_resources()
    assert any('tool_descriptions' in r['uri'] for r in resources)
    
    # 2. List tools - should see minimal descriptions
    tools = await server.list_tools()
    assert len(tools) > 0
    assert all('description' in t for t in tools)
    
    # 3. Try calling without fetching - should fail
    with pytest.raises(Exception) as exc:
        await server.call_tool("tool_one", {})
    assert "TOOL_DESCRIPTION_REQUIRED" in str(exc)
    
    # 4. Fetch description
    desc = await server.read_resource("resource:///tool_descriptions?tools=tool_one")
    assert 'tool_one' in desc
    assert 'inputSchema' in desc['tool_one']
    
    # 5. Call tool - should succeed
    result = await server.call_tool("tool_one", {"param1": "value"})
    assert result['success'] == True

3. LLM Behavior Tests

Test actual LLM compliance:

async def test_llm_workflow():
    """Test that LLM follows correct workflow"""
    agent = TestAgent(server="my-server")
    
    # Give task that requires tool use
    response = await agent.query("Get some data")
    
    # Verify LLM workflow
    assert agent.trace.contains_call("read_resource")
    assert "?tools=" in agent.trace.last_resource_uri
    assert agent.trace.contains_call("tool_one")
    
    # Verify no errors
    assert not agent.trace.contains_error("MISSING_TOOL_SELECTION")
    assert not agent.trace.contains_error("TOOL_DESCRIPTION_REQUIRED")

Common Pitfalls

1. Base URI Without Tools Parameter

Problem: LLM calls resource:///tool_descriptions without ?tools=

Cause: Resource description not clear about WHAT vs HOW distinction

Solution:

  • Emphasize that tools/list is sufficient for selection
  • Show incorrect example explicitly
  • Use system prompt reinforcement

2. Calling Tool Before Fetching

Problem: LLM tries to call tool directly

Cause: Over-emphasizing "descriptions sufficient for selection"

Solution:

  • Balance messaging: sufficient for choosing, not for using
  • State clearly: "CANNOT call until fetched"
  • Include authorization rationale

3. Session ID Issues

Problem: Authorization not persisting or crossing sessions

Cause: Using unstable session identifier

Solution:

  • Use id(request_context.session) as session ID
  • This is stable for the connection lifetime
  • No external dependencies required

4. Tool Names Don't Match

Problem: Fetched tool name doesn't match tools/list name

Cause: Typo or case mismatch

Solution:

  • Use exact same names in JSON files as in tools/list
  • Include "available_tools" in error responses
  • Log mismatches for debugging

5. Stale Sessions Accumulate

Problem: Memory grows over time

Cause: No session cleanup

Solution:

  • Implement periodic cleanup (every 10 minutes)
  • Remove sessions with no activity for 1 hour
  • Run as background task

Token Efficiency Analysis

Baseline (Full Descriptions)

Per-tool cost: 3000-5000 tokens
10 tools: 30,000-50,000 tokens at startup
Problem: Consumes significant context before any actual work

With Progressive Disclosure

Minimal descriptions (all tools): 500-1000 tokens
Full description (when fetched): 3000-5000 tokens per tool
Typical usage (2 tools): 500 + (2 Γ— 4000) = 8,500 tokens

Savings: 75-80% token reduction for typical workflows

Break-Even Analysis

Progressive disclosure saves tokens when:

Number of tools Γ— (full description size - minimal size) > fetch overhead

For 5+ tools, progressive disclosure almost always wins.


Migration Guide

From Traditional to Progressive Disclosure

Step 1: Extract existing tool descriptions

# Before: Full description in tools/list
Tool(
    name="my_tool",
    description="Long description...",
    inputSchema={/* full schema */}
)

# After: Minimal in tools/list
Tool(
    name="my_tool",
    description="Brief description of purpose",
    inputSchema={"type": "object", "additionalProperties": True}
)

# Full description moved to tool_descriptions/my_tool.json

Step 2: Implement resource handlers (see Server Implementation section)

Step 3: Add authorization enforcement

Step 4: Update agent system prompt (if you control the agent)

Step 5: Test with real queries

Backwards Compatibility

To support both patterns during migration:

@app.list_tools()
async def list_tools() -> list[Tool]:
    # Check if client supports progressive disclosure
    # (presence of read_resource capability or similar)
    if supports_progressive_disclosure:
        return minimal_tools()
    else:
        return full_tools()

Best Practices

βœ… DO

  • Store tool descriptions in separate JSON files
  • Use clear sequential steps in resource description
  • Distinguish WHAT (selection) from HOW (parameters)
  • Provide system prompt guidance for agents
  • Log authorization events for debugging
  • Cache parsed descriptions in memory
  • Clean up stale sessions periodically
  • Include concrete examples in resource description
  • Test with real LLMs, not just unit tests

❌ DON'T

  • Don't make tool descriptions too minimal (must be sufficient for selection)
  • Don't omit the ?tools= requirement from resource description
  • Don't use unstable session identifiers
  • Don't skip authorization checks
  • Don't expose internal paths in descriptions
  • Don't rely solely on resource description (use system prompt too)
  • Don't optimize prematurely (measure token savings first)

Troubleshooting

LLM keeps trying base URI without tools parameter

Diagnosis: Resource description or system prompt not clear enough

Fix:

  1. Add explicit prohibition in resource description
  2. Show incorrect example with ❌
  3. Enhance system prompt with workflow
  4. Test wording iteratively

Authorization failures despite fetching

Diagnosis: Session ID mismatch or session cleanup too aggressive

Fix:

  1. Verify id(session) is stable
  2. Log session IDs during fetch and call
  3. Increase cleanup timeout
  4. Check for session resets

Tool descriptions not loading

Diagnosis: File path or JSON format issues

Fix:

  1. Verify tool_descriptions directory exists
  2. Check JSON syntax with json.loads()
  3. Ensure file names match exactly (case-sensitive)
  4. Log file paths being accessed

Memory growth over time

Diagnosis: Sessions not being cleaned up

Fix:

  1. Implement background cleanup task
  2. Lower max_age_seconds threshold
  3. Monitor session count in production
  4. Consider LRU cache with size limit

Production Checklist

Before deploying progressive disclosure:

  • Tool descriptions extracted to JSON files
  • Minimal descriptions sufficient for tool selection
  • Resource description includes clear workflow
  • System prompt enhanced (if controlling agent)
  • Authorization enforcement implemented
  • Session cleanup running
  • Error messages include recovery URIs
  • Logging enabled for debugging
  • Integration tests passing
  • LLM behavior tested with real queries
  • Token savings measured and validated
  • Documentation updated for users

Further Reading


Questions or Issues?

If you encounter problems not covered in this guide, please:

  1. Check the specification for normative requirements
  2. Review the troubleshooting section
  3. Test with minimal examples
  4. Share findings with the community

Last Updated: 2025-11-30
Companion Specification: v2.1