fleetmind-dispatch-ai / README_MCP.md
mashrur950's picture
feat: Initialize FleetMind MCP Server with core functionalities
6eba330
|
raw
history blame
14.2 kB

FleetMind MCP Server

Industry-standard Model Context Protocol server for AI-powered delivery dispatch management

FastMCP Python License


Overview

FleetMind MCP Server provides 18 AI tools and 2 real-time resources for managing delivery dispatch operations through any MCP-compatible client (Claude Desktop, Continue, Cline, etc.).

What is MCP? The Model Context Protocol (MCP) is an open standard that enables AI assistants to securely connect to external data sources and tools. Think of it as a universal API for AI agents.


Quick Start

1. Installation

# Clone the repository
git clone https://github.com/your-org/fleetmind-mcp.git
cd fleetmind-mcp

# Install dependencies
pip install -r requirements.txt

# Configure environment variables
cp .env.example .env
# Edit .env with your credentials

2. Configure Environment

Edit .env file:

# Database (required)
DB_HOST=your-postgres-host.com
DB_PORT=5432
DB_NAME=fleetmind
DB_USER=your_db_user
DB_PASSWORD=your_db_password

# Google Maps API (required for geocoding)
GOOGLE_MAPS_API_KEY=your_google_maps_key

3. Test the Server

# Test server imports and database connectivity
python -c "import server; print('FleetMind MCP Server ready!')"

4. Run with Claude Desktop

Add to your Claude Desktop config (claude_desktop_config.json):

{
  "mcpServers": {
    "fleetmind": {
      "command": "python",
      "args": ["F:\\path\\to\\fleetmind-mcp\\server.py"],
      "env": {
        "GOOGLE_MAPS_API_KEY": "your_api_key",
        "DB_HOST": "your-host.com",
        "DB_NAME": "fleetmind",
        "DB_USER": "your_user",
        "DB_PASSWORD": "your_password"
      }
    }
  }
}

Restart Claude Desktop. You'll now see FleetMind tools available!


Architecture

Before (Gradio UI):

User β†’ Gradio Web UI β†’ ChatEngine β†’ Gemini/Claude API β†’ Tools β†’ Database

After (MCP Protocol):

User β†’ Claude Desktop (or any MCP client) β†’ MCP Protocol β†’ FleetMind Server β†’ Tools β†’ Database
       β””β†’ Continue.dev β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
       β””β†’ Cline β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
       β””β†’ Custom Apps β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Benefits:

  • βœ… Use from multiple clients (Claude Desktop, VS Code, mobile apps)
  • βœ… 46% less code (no UI, no provider abstractions)
  • βœ… Industry-standard protocol (MCP)
  • βœ… Better testing (isolated tools)
  • βœ… Scalable architecture

Features

18 AI Tools

Order Management (10 tools)

  • geocode_address - Convert addresses to GPS coordinates
  • calculate_route - Find shortest route between locations
  • create_order - Create new delivery orders
  • count_orders - Count orders with filters
  • fetch_orders - Retrieve orders with pagination
  • get_order_details - Get complete order information
  • search_orders - Search by customer/ID
  • get_incomplete_orders - List active deliveries
  • update_order - Update order details (auto-geocoding)
  • delete_order - Permanently remove orders

Driver Management (8 tools)

  • create_driver - Onboard new drivers
  • count_drivers - Count drivers with filters
  • fetch_drivers - Retrieve drivers with pagination
  • get_driver_details - Get driver info + reverse-geocoded location
  • search_drivers - Search by name/plate/ID
  • get_available_drivers - List drivers ready for dispatch
  • update_driver - Update driver information
  • delete_driver - Remove drivers from fleet

2 Real-Time Resources

  • orders://all - Live orders dataset (last 30 days, max 1000)
  • drivers://all - Live drivers dataset with locations

Resources provide AI assistants with contextual data for smarter responses.


Usage Examples

Example 1: Create an Order

User (in Claude Desktop): "Create an urgent delivery order for Sarah Johnson at 456 Oak Ave, San Francisco CA. Phone: 555-1234."

Claude automatically:

  1. Calls geocode_address("456 Oak Ave, San Francisco CA")
  2. Gets coordinates: (37.7749, -122.4194)
  3. Calls create_order(customer_name="Sarah Johnson", delivery_address="456 Oak Ave, SF CA 94103", delivery_lat=37.7749, delivery_lng=-122.4194, customer_phone="555-1234", priority="urgent")
  4. Returns: "Order ORD-20251114163800 created successfully!"

Example 2: Assign Driver

User: "Assign order ORD-20251114163800 to the nearest available driver"

Claude automatically:

  1. Calls get_order_details("ORD-20251114163800") β†’ Gets delivery location
  2. Calls get_available_drivers(limit=10) β†’ Lists available drivers
  3. Calls calculate_route() for each driver β†’ Finds nearest
  4. Calls update_order(order_id="ORD-20251114163800", assigned_driver_id="DRV-...", status="assigned")
  5. Returns: "Order assigned to John Smith (DRV-20251110120000), 5.2 km away, ETA 12 mins"

Example 3: Track Orders

User: "Show me all urgent orders that haven't been delivered yet"

Claude automatically:

  1. Calls fetch_orders(status="pending", priority="urgent") OR
  2. Calls fetch_orders(status="in_transit", priority="urgent")
  3. Returns formatted list with customer names, addresses, and deadlines

API Reference

Tool: create_order

Create a new delivery order.

Parameters:

  • customer_name (string, required): Full name
  • delivery_address (string, required): Complete address
  • delivery_lat (float, required): Latitude from geocoding
  • delivery_lng (float, required): Longitude from geocoding
  • customer_phone (string, optional): Phone number
  • customer_email (string, optional): Email address
  • priority (enum, optional): standard | express | urgent (default: standard)
  • weight_kg (float, optional): Package weight (default: 5.0)
  • special_instructions (string, optional): Delivery notes
  • time_window_end (string, optional): Deadline in ISO format (default: +6 hours)

Returns:

{
  "success": true,
  "order_id": "ORD-20251114163800",
  "status": "pending",
  "customer": "Sarah Johnson",
  "address": "456 Oak Ave, San Francisco CA 94103",
  "deadline": "2025-11-14T22:38:00",
  "priority": "urgent",
  "message": "Order created successfully!"
}

Tool: calculate_route

Calculate shortest route between two locations.

Parameters:

  • origin (string, required): Starting location (address or "lat,lng")
  • destination (string, required): Ending location (address or "lat,lng")
  • mode (enum, optional): driving | walking | bicycling | transit (default: driving)
  • alternatives (boolean, optional): Return multiple routes (default: false)
  • include_steps (boolean, optional): Include turn-by-turn directions (default: false)

Returns:

{
  "success": true,
  "origin": "San Francisco City Hall, CA 94102, USA",
  "destination": "Oakland Airport, CA 94621, USA",
  "distance": {"meters": 25400, "text": "25.4 km"},
  "duration": {"seconds": 1680, "text": "28 mins"},
  "mode": "driving",
  "route_summary": "I-880 N",
  "confidence": "high (Google Maps API)"
}

Resource: orders://all

Real-time orders dataset for AI context.

Contains: All orders from last 30 days (max 1000)

Fields: order_id, customer_name, delivery_address, status, priority, created_at, assigned_driver_id

Usage: AI automatically references this when answering questions like "How many pending orders?" or "What's the oldest unassigned order?"

Resource: drivers://all

Real-time drivers dataset with current locations.

Contains: All drivers sorted alphabetically

Fields: driver_id, name, status, vehicle_type, vehicle_plate, current_lat, current_lng, last_location_update

Usage: AI automatically references this for questions like "How many active drivers?" or "Which driver is closest to downtown?"


Database Schema

orders table (26 columns)

CREATE TABLE orders (
    order_id VARCHAR(50) PRIMARY KEY,
    customer_name VARCHAR(255) NOT NULL,
    customer_phone VARCHAR(20),
    customer_email VARCHAR(255),
    delivery_address TEXT NOT NULL,
    delivery_lat DECIMAL(10,8),
    delivery_lng DECIMAL(11,8),
    status VARCHAR(20) CHECK (status IN ('pending','assigned','in_transit','delivered','failed','cancelled')),
    priority VARCHAR(20) CHECK (priority IN ('standard','express','urgent')),
    time_window_end TIMESTAMP,
    assigned_driver_id VARCHAR(50),
    payment_status VARCHAR(20) CHECK (payment_status IN ('pending','paid','cod')),
    weight_kg DECIMAL(10,2),
    special_instructions TEXT,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
    -- ... additional fields
);

drivers table (15 columns)

CREATE TABLE drivers (
    driver_id VARCHAR(50) PRIMARY KEY,
    name VARCHAR(255) NOT NULL,
    phone VARCHAR(20),
    email VARCHAR(255),
    status VARCHAR(20) CHECK (status IN ('active','busy','offline','unavailable')),
    vehicle_type VARCHAR(50),
    vehicle_plate VARCHAR(20),
    capacity_kg DECIMAL(10,2),
    skills JSONB,
    current_lat DECIMAL(10,8),
    current_lng DECIMAL(11,8),
    last_location_update TIMESTAMP,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

Development

Project Structure

fleetmind-mcp/
β”œβ”€β”€ server.py              # Main MCP server (882 lines)
β”œβ”€β”€ pyproject.toml         # Package configuration
β”œβ”€β”€ mcp_config.json        # MCP metadata
β”œβ”€β”€ requirements.txt       # Dependencies
β”œβ”€β”€ .env                   # Environment variables
β”‚
β”œβ”€β”€ chat/
β”‚   β”œβ”€β”€ tools.py          # 18 tool handlers (2099 lines)
β”‚   └── geocoding.py      # Geocoding service (429 lines)
β”‚
β”œβ”€β”€ database/
β”‚   β”œβ”€β”€ connection.py     # Database layer (221 lines)
β”‚   └── schema.py         # Schema definitions (213 lines)
β”‚
β”œβ”€β”€ logs/                 # Server logs
└── docs/                 # Documentation

Running Tests

# Install test dependencies
pip install pytest pytest-asyncio

# Run tests
pytest tests/

Testing with MCP Inspector

# Official MCP protocol testing tool
npx @modelcontextprotocol/inspector python server.py

Deployment

Option 1: Local Development

python server.py

Option 2: Docker Container

FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
CMD ["python", "server.py"]
docker build -t fleetmind-mcp .
docker run -d --env-file .env fleetmind-mcp

Option 3: Production Server

For production, use a process manager like supervisord or systemd:

# /etc/systemd/system/fleetmind-mcp.service
[Unit]
Description=FleetMind MCP Server
After=network.target

[Service]
Type=simple
User=fleetmind
WorkingDirectory=/opt/fleetmind-mcp
Environment="PATH=/opt/fleetmind-mcp/venv/bin"
EnvironmentFile=/opt/fleetmind-mcp/.env
ExecStart=/opt/fleetmind-mcp/venv/bin/python server.py
Restart=always

[Install]
WantedBy=multi-user.target

Troubleshooting

Error: "Cannot import name 'UserMessage'"

Solution: Prompts are currently disabled pending FastMCP API confirmation. Tools and resources work perfectly.

Error: "Database connection failed"

Check:

  1. .env file has correct credentials
  2. PostgreSQL server is running
  3. Database fleetmind exists
  4. Network allows connection (check firewall/security groups)

Error: "Geocoding failed"

Check:

  1. GOOGLE_MAPS_API_KEY is set in .env
  2. API key has Geocoding API enabled
  3. API key has sufficient quota

Fallback: Server automatically uses mock geocoding if API unavailable.


Migration from Gradio UI

What Changed?

Component Gradio Version MCP Version
UI Gradio web interface Any MCP client
AI Provider Gemini/Claude via API Client handles AI
Tool Execution chat/tools.py handlers Same handlers
Database PostgreSQL/Neon Same database
Geocoding Google Maps API Same API

What Stayed the Same?

  • βœ… All 18 tool handlers (unchanged)
  • βœ… Database schema (identical)
  • βœ… Geocoding logic (same)
  • βœ… Business logic (preserved)
  • βœ… .env configuration (compatible)

Migration Steps

  1. Backup your data: pg_dump fleetmind > backup.sql
  2. Install MCP dependencies: pip install -r requirements.txt
  3. Test server: python -c "import server"
  4. Configure Claude Desktop: Add server to claude_desktop_config.json
  5. Test with Claude: Create a test order
  6. Archive old code: Move ui/, chat/providers/, chat/chat_engine.py to archive/

Contributing

We welcome contributions! Please:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

MIT License - see LICENSE file for details.


Support


Roadmap

  • Convert all 18 tools to MCP format
  • Add 2 real-time resources (orders, drivers)
  • Add prompt templates (pending FastMCP API confirmation)
  • Add assignment optimization algorithm
  • Add route optimization for multi-stop deliveries
  • Add real-time driver tracking via WebSocket
  • Add analytics dashboard
  • [] Mobile app MCP client

Built with ❀️ using FastMCP