Spaces:
Running
A newer version of the Gradio SDK is available:
6.1.0
LlamaIndex Integration - Implementation Summary
Completed Implementation
Successfully implemented complete LlamaIndex integration for EcoMCP with foundation for knowledge base indexing, vector similarity search, and document retrieval.
1. Core Components Implemented
knowledge_base.py (265 lines)
Foundation for knowledge base indexing
IndexConfig: Configuration class for embeddings and chunkingKnowledgeBase: Main class for index management- Document indexing from directories
- Vector store (in-memory or Pinecone)
- Search functionality
- Query engine (QA capability)
- Index persistence (save/load)
Key features:
- OpenAI embeddings integration
- Pinecone vector store support
- Document chunk management
- Index persistence to disk
document_loader.py (282 lines)
Load documents from various sources
- Load markdown documents
- Load text documents
- Load JSON documents (product data)
- Load from URLs
- Create product documents from structured data
- Unified loader for all sources
Key features:
- Flexible source support
- Metadata extraction
- Format conversion
- Batch loading
vector_search.py (301 lines)
Structure for vector similarity search
SearchResult: Dataclass for search resultsVectorSearchEngine: High-level search interface- Basic similarity search
- Product-specific search
- Documentation search
- Semantic search with thresholds
- Hierarchical search (multi-type)
- Weighted combined search
- Contextual search
- Recommendation engine
- Result filtering and ranking
Key features:
- Multiple search strategies
- Result scoring and ranking
- Metadata filtering
- Context-aware search
- Recommendation generation
llama_integration.py (259 lines)
Document retrieval ready integration
EcoMCPKnowledgeBase: Complete integration wrapper- Unified API combining all components
- Global singleton pattern for easy access
Key features:
- One-line initialization
- Document directory indexing
- Product management
- URL management
- Unified search interface
- Statistics and monitoring
- Index persistence
2. Integration Points
Updated src/core/__init__.py
- Exports all major classes and functions
- Clean API surface
- Easy module imports
examples.py (264 lines)
8 comprehensive usage examples
- Basic indexing
- Product search
- Documentation search
- Semantic search
- Recommendations
- Hierarchical search
- Custom configuration
- Persistence (save/load)
- Query engine
test_llama_integration.py (233 lines)
Comprehensive test suite
- Configuration tests
- Document loading tests
- Knowledge base tests
- Search result tests
- Integration tests
- 12+ test cases
3. Documentation
LLAMA_INDEX_GUIDE.md
Complete usage guide covering:
- Component overview
- API reference with code examples
- Configuration options
- Installation instructions
- 4 detailed usage scenarios
- Integration patterns
- Advanced features
- Performance tips
- Troubleshooting
- Testing instructions
4. Key Features Implemented
β Knowledge Base Indexing
- Support for markdown, text, JSON, URL documents
- Product data indexing
- Configurable chunking (size, overlap)
- Multiple embedding models
β Vector Similarity Search
- Semantic search with thresholds
- Document type filtering
- Metadata-based filtering
- Result ranking and scoring
- Context-aware search
β Document Retrieval
- Multi-source loading
- Search across product and documentation
- Hierarchical retrieval
- Batch operations
- Index persistence
β Advanced Features
- Recommendation engine
- Natural language QA
- Weighted combined search
- Pinecone integration
- Global singleton pattern
- Configuration management
5. Code Statistics
| File | Lines | Purpose |
|---|---|---|
| knowledge_base.py | 265 | Core indexing foundation |
| document_loader.py | 282 | Document loading utilities |
| vector_search.py | 301 | Search interface & algorithms |
| llama_integration.py | 259 | EcoMCP integration wrapper |
| init.py | 28 | Module exports |
| examples.py | 264 | Usage examples |
| test_llama_integration.py | 233 | Test suite |
| LLAMA_INDEX_GUIDE.md | - | Documentation |
| Total | 1,632 | Complete implementation |
6. Architecture
EcoMCP Knowledge Base
βββ DocumentLoader (load from various sources)
β βββ load_markdown_documents()
β βββ load_text_documents()
β βββ load_json_documents()
β βββ load_documents_from_urls()
β βββ create_product_documents()
β βββ load_all_documents()
β
βββ KnowledgeBase (core indexing)
β βββ index_documents()
β βββ add_documents()
β βββ search()
β βββ query()
β βββ save_index()
β βββ load_index()
β
βββ VectorSearchEngine (search interface)
β βββ search()
β βββ search_products()
β βββ search_documentation()
β βββ semantic_search()
β βββ hierarchical_search()
β βββ combined_search()
β βββ contextual_search()
β βββ get_recommendations()
β
βββ EcoMCPKnowledgeBase (integrated wrapper)
βββ All of above + global access
7. Usage Quick Start
from src.core import EcoMCPKnowledgeBase
# Initialize
kb = EcoMCPKnowledgeBase()
kb.initialize("./docs")
# Add products
kb.add_products(products)
# Search
results = kb.search("your query", top_k=5)
# Get recommendations
recs = kb.get_recommendations("laptop under $1000", limit=5)
# Save for later
kb.save("./kb_index")
8. Integration with Server
Ready to integrate with:
- MCP server handlers
- API endpoints
- Gradio UI components
- Async/await patterns
- Modal deployment
- HuggingFace Spaces
9. Requirements
Added to requirements.txt:
llama-index>=0.9.0
llama-index-embeddings-openai>=0.1.0
llama-index-vector-stores-pinecone>=0.1.0
Environment variables needed:
OPENAI_API_KEY=sk-...
PINECONE_API_KEY=... # Optional
10. Testing
Run test suite:
pytest tests/test_llama_integration.py -v
Features tested:
- Configuration validation
- Document loading (all formats)
- Knowledge base initialization
- Search result handling
- Filter matching logic
- Module imports
Next Steps
- Server Integration: Add search endpoints to MCP server
- UI Components: Create Gradio search interface
- Product Data: Load actual e-commerce products
- Performance: Add caching layer
- Monitoring: Add search analytics
- Production: Deploy with Pinecone backend
Files Created
src/core/
βββ knowledge_base.py β NEW
βββ document_loader.py β NEW
βββ vector_search.py β NEW
βββ llama_integration.py β NEW
βββ examples.py β NEW
βββ __init__.py β UPDATED
tests/
βββ test_llama_integration.py β NEW
docs/
βββ LLAMA_INDEX_GUIDE.md β NEW
βββ LLAMA_IMPLEMENTATION_SUMMARY.md β NEW
Status
β COMPLETE - Full LlamaIndex integration implemented
- Foundation for knowledge base indexing: β
- Vector similarity search structure: β
- Document retrieval capability: β
- Documentation: β
- Examples: β
- Tests: β
Ready for production integration and deployment.