ecomcp / docs /LLAMA_IMPLEMENTATION_SUMMARY.md
vinhnx90's picture
feat: Implement LlamaIndex integration with new core modules for knowledge base, document loading, vector search, and comprehensive documentation and tests.
108d8af

A newer version of the Gradio SDK is available: 6.1.0

Upgrade

LlamaIndex Integration - Implementation Summary

Completed Implementation

Successfully implemented complete LlamaIndex integration for EcoMCP with foundation for knowledge base indexing, vector similarity search, and document retrieval.

1. Core Components Implemented

knowledge_base.py (265 lines)

Foundation for knowledge base indexing

  • IndexConfig: Configuration class for embeddings and chunking
  • KnowledgeBase: Main class for index management
    • Document indexing from directories
    • Vector store (in-memory or Pinecone)
    • Search functionality
    • Query engine (QA capability)
    • Index persistence (save/load)

Key features:

  • OpenAI embeddings integration
  • Pinecone vector store support
  • Document chunk management
  • Index persistence to disk

document_loader.py (282 lines)

Load documents from various sources

  • Load markdown documents
  • Load text documents
  • Load JSON documents (product data)
  • Load from URLs
  • Create product documents from structured data
  • Unified loader for all sources

Key features:

  • Flexible source support
  • Metadata extraction
  • Format conversion
  • Batch loading

vector_search.py (301 lines)

Structure for vector similarity search

  • SearchResult: Dataclass for search results
  • VectorSearchEngine: High-level search interface
    • Basic similarity search
    • Product-specific search
    • Documentation search
    • Semantic search with thresholds
    • Hierarchical search (multi-type)
    • Weighted combined search
    • Contextual search
    • Recommendation engine
    • Result filtering and ranking

Key features:

  • Multiple search strategies
  • Result scoring and ranking
  • Metadata filtering
  • Context-aware search
  • Recommendation generation

llama_integration.py (259 lines)

Document retrieval ready integration

  • EcoMCPKnowledgeBase: Complete integration wrapper
  • Unified API combining all components
  • Global singleton pattern for easy access

Key features:

  • One-line initialization
  • Document directory indexing
  • Product management
  • URL management
  • Unified search interface
  • Statistics and monitoring
  • Index persistence

2. Integration Points

Updated src/core/__init__.py

  • Exports all major classes and functions
  • Clean API surface
  • Easy module imports

examples.py (264 lines)

8 comprehensive usage examples

  1. Basic indexing
  2. Product search
  3. Documentation search
  4. Semantic search
  5. Recommendations
  6. Hierarchical search
  7. Custom configuration
  8. Persistence (save/load)
  9. Query engine

test_llama_integration.py (233 lines)

Comprehensive test suite

  • Configuration tests
  • Document loading tests
  • Knowledge base tests
  • Search result tests
  • Integration tests
  • 12+ test cases

3. Documentation

LLAMA_INDEX_GUIDE.md

Complete usage guide covering:

  • Component overview
  • API reference with code examples
  • Configuration options
  • Installation instructions
  • 4 detailed usage scenarios
  • Integration patterns
  • Advanced features
  • Performance tips
  • Troubleshooting
  • Testing instructions

4. Key Features Implemented

βœ… Knowledge Base Indexing

  • Support for markdown, text, JSON, URL documents
  • Product data indexing
  • Configurable chunking (size, overlap)
  • Multiple embedding models

βœ… Vector Similarity Search

  • Semantic search with thresholds
  • Document type filtering
  • Metadata-based filtering
  • Result ranking and scoring
  • Context-aware search

βœ… Document Retrieval

  • Multi-source loading
  • Search across product and documentation
  • Hierarchical retrieval
  • Batch operations
  • Index persistence

βœ… Advanced Features

  • Recommendation engine
  • Natural language QA
  • Weighted combined search
  • Pinecone integration
  • Global singleton pattern
  • Configuration management

5. Code Statistics

File Lines Purpose
knowledge_base.py 265 Core indexing foundation
document_loader.py 282 Document loading utilities
vector_search.py 301 Search interface & algorithms
llama_integration.py 259 EcoMCP integration wrapper
init.py 28 Module exports
examples.py 264 Usage examples
test_llama_integration.py 233 Test suite
LLAMA_INDEX_GUIDE.md - Documentation
Total 1,632 Complete implementation

6. Architecture

EcoMCP Knowledge Base
β”œβ”€β”€ DocumentLoader (load from various sources)
β”‚   β”œβ”€β”€ load_markdown_documents()
β”‚   β”œβ”€β”€ load_text_documents()
β”‚   β”œβ”€β”€ load_json_documents()
β”‚   β”œβ”€β”€ load_documents_from_urls()
β”‚   β”œβ”€β”€ create_product_documents()
β”‚   └── load_all_documents()
β”‚
β”œβ”€β”€ KnowledgeBase (core indexing)
β”‚   β”œβ”€β”€ index_documents()
β”‚   β”œβ”€β”€ add_documents()
β”‚   β”œβ”€β”€ search()
β”‚   β”œβ”€β”€ query()
β”‚   β”œβ”€β”€ save_index()
β”‚   └── load_index()
β”‚
β”œβ”€β”€ VectorSearchEngine (search interface)
β”‚   β”œβ”€β”€ search()
β”‚   β”œβ”€β”€ search_products()
β”‚   β”œβ”€β”€ search_documentation()
β”‚   β”œβ”€β”€ semantic_search()
β”‚   β”œβ”€β”€ hierarchical_search()
β”‚   β”œβ”€β”€ combined_search()
β”‚   β”œβ”€β”€ contextual_search()
β”‚   └── get_recommendations()
β”‚
└── EcoMCPKnowledgeBase (integrated wrapper)
    └── All of above + global access

7. Usage Quick Start

from src.core import EcoMCPKnowledgeBase

# Initialize
kb = EcoMCPKnowledgeBase()
kb.initialize("./docs")

# Add products
kb.add_products(products)

# Search
results = kb.search("your query", top_k=5)

# Get recommendations
recs = kb.get_recommendations("laptop under $1000", limit=5)

# Save for later
kb.save("./kb_index")

8. Integration with Server

Ready to integrate with:

  • MCP server handlers
  • API endpoints
  • Gradio UI components
  • Async/await patterns
  • Modal deployment
  • HuggingFace Spaces

9. Requirements

Added to requirements.txt:

llama-index>=0.9.0
llama-index-embeddings-openai>=0.1.0
llama-index-vector-stores-pinecone>=0.1.0

Environment variables needed:

OPENAI_API_KEY=sk-...
PINECONE_API_KEY=...  # Optional

10. Testing

Run test suite:

pytest tests/test_llama_integration.py -v

Features tested:

  • Configuration validation
  • Document loading (all formats)
  • Knowledge base initialization
  • Search result handling
  • Filter matching logic
  • Module imports

Next Steps

  1. Server Integration: Add search endpoints to MCP server
  2. UI Components: Create Gradio search interface
  3. Product Data: Load actual e-commerce products
  4. Performance: Add caching layer
  5. Monitoring: Add search analytics
  6. Production: Deploy with Pinecone backend

Files Created

src/core/
β”œβ”€β”€ knowledge_base.py          βœ“ NEW
β”œβ”€β”€ document_loader.py         βœ“ NEW
β”œβ”€β”€ vector_search.py           βœ“ NEW
β”œβ”€β”€ llama_integration.py       βœ“ NEW
β”œβ”€β”€ examples.py                βœ“ NEW
└── __init__.py               βœ“ UPDATED

tests/
└── test_llama_integration.py  βœ“ NEW

docs/
β”œβ”€β”€ LLAMA_INDEX_GUIDE.md       βœ“ NEW
└── LLAMA_IMPLEMENTATION_SUMMARY.md βœ“ NEW

Status

βœ… COMPLETE - Full LlamaIndex integration implemented

  • Foundation for knowledge base indexing: βœ“
  • Vector similarity search structure: βœ“
  • Document retrieval capability: βœ“
  • Documentation: βœ“
  • Examples: βœ“
  • Tests: βœ“

Ready for production integration and deployment.