Text-Gym-Agents / gradio_reflexion.py
ewanlee
atari visualization with Gradio
eaa7556
import envs
import deciders
import distillers
import prompts as task_prompts
import datetime
import time
from envs.translator import InitSummarizer, CurrSummarizer, FutureSummarizer, Translator
import gym
import pandas as pd
import random
import datetime
from loguru import logger
from argparse import Namespace
import gradio as gr
def set_seed(seed):
random.seed(seed)
def main_progress(env_name, decider, prompt_level, num_trails, seed):
init_summarizer = env_name.split("-")[0] + '_init_translator'
curr_summarizer = env_name.split("-")[0] + '_basic_translator'
args = Namespace(
env_name=env_name,
init_summarizer=init_summarizer,
curr_summarizer=curr_summarizer,
decider=decider,
prompt_level=prompt_level,
num_trails=num_trails,
seed=seed,
future_summarizer=None,
env="base_env",
gpt_version="gpt-3.5-turbo",
render="rgb_array",
max_episode_len=200,
max_query_tokens=5000,
max_tokens=2000,
distiller="traj_distiller",
prompt_path=None,
use_short_mem=1,
short_mem_num=10,
is_only_local_obs=1,
api_type="azure",
)
if args.api_type != "azure" and args.api_type != "openai":
raise ValueError(f"The {args.api_type} is not supported, please use 'azure' or 'openai' !")
# Please note when using "azure", the model name is gpt-35-turbo while using "openai", the model name is "gpt-3.5-turbo"
if args.api_type == "azure":
if args.gpt_version == "gpt-3.5-turbo":
args.gpt_version = 'gpt-35-turbo'
elif args.api_type == "openai":
if args.gpt_version == "gpt-35-turbo":
args.gpt_version = 'gpt-3.5-turbo'
# Get the specified translator, environment, and ChatGPT model
env_class = envs.REGISTRY[args.env]
init_summarizer = InitSummarizer(envs.REGISTRY[args.init_summarizer], args)
curr_summarizer = CurrSummarizer(envs.REGISTRY[args.curr_summarizer])
if args.future_summarizer:
future_summarizer = FutureSummarizer(
envs.REGISTRY[args.future_summarizer],
envs.REGISTRY["cart_policies"],
future_horizon=args.future_horizon,
)
else:
future_summarizer = None
decider_class = deciders.REGISTRY[args.decider]
distiller_class = distillers.REGISTRY[args.distiller]
sampling_env = envs.REGISTRY["sampling_wrapper"](gym.make(args.env_name))
if args.prompt_level == 5:
prompts_class = task_prompts.REGISTRY[(args.env_name,args.decider)]()
else:
prompts_class = task_prompts.REGISTRY[(args.decider)]()
translator = Translator(
init_summarizer, curr_summarizer, future_summarizer, env=sampling_env
)
environment = env_class(
gym.make(args.env_name, render_mode=args.render), translator
)
logfile = (
f"llm.log/output-{args.env_name}-{args.decider}-{args.gpt_version}-l{args.prompt_level}"
f"-{datetime.datetime.now().timestamp()}.log"
)
logfile_reflexion = (
f"llm.log/memory-{args.env_name}-{args.decider}-{args.gpt_version}-l{args.prompt_level}"
f"-{datetime.datetime.now().timestamp()}.log"
)
my_distiller = distiller_class(logfile=logfile_reflexion,args=args)
args.game_description = environment.game_description
args.goal_description = environment.goal_description
args.action_description = environment.action_description
args.action_desc_dict = environment.action_desc_dict
args.reward_desc_dict = environment.reward_desc_dict
logger.add(logfile, colorize=True, enqueue=True, filter=lambda x: '[Reflexion Memory]' not in x['message'])
decider = decider_class(environment.env.action_space, args, prompts_class, my_distiller, temperature=0.0, logger=logger, max_tokens=args.max_tokens)
# Evaluate the translator
utilities = []
df = pd.read_csv('record_reflexion.csv', sep=',')
filtered_df = df[(df['env'] == args.env_name) & (df['decider'] == 'expert') & (df['level'] == 1)]
expert_score = filtered_df['avg_score'].item()
seeds = [i for i in range(1000)]
# prompt_file = "prompt.txt"
# f = open(prompt_file,"w+")
num_trails = args.num_trails
if not "Blackjack" in args.env_name:
curriculums = 1
else:
curriculums = 20
for curriculum in range(curriculums):
for trail in range(num_trails):
if "Blackjack" in args.env_name:
seed = seeds[curriculum*curriculums + num_trails - trail - 1]
else:
seed = args.seed
# single run
# Reset the environment
if not "Blackjack" in args.env_name:
set_seed(args.seed)
seed = args.seed
# Reset the environment
state_description, env_info = environment.reset(seed=args.seed)
else:
set_seed(seed)
# Reset the environment
state_description, env_info = environment.reset(seed=seed)
game_description = environment.get_game_description()
goal_description = environment.get_goal_description()
action_description = environment.get_action_description()
# Initialize the statistics
frames = []
utility = 0
current_total_tokens = 0
current_total_cost = 0
start_time = datetime.datetime.now()
# Run the game for a maximum number of steps
for round in range(args.max_episode_len):
# Keep asking ChatGPT for an action until it provides a valid one
error_flag = True
retry_num = 1
for error_i in range(retry_num):
try:
action, prompt, response, tokens, cost = decider.act(
state_description,
action_description,
env_info,
game_description,
goal_description,
logfile
)
state_description, reward, termination, truncation, env_info = environment.step_llm(
action
)
if "Cliff" in args.env_name or "Frozen" in args.env_name:
decider.env_history.add('reward', env_info['potential_state'] + environment.reward_desc_dict[reward])
else:
decider.env_history.add('reward', f"The player get rewards {reward}.")
utility += reward
# Update the statistics
current_total_tokens += tokens
current_total_cost += cost
error_flag = False
break
except Exception as e:
print(e)
if error_i < retry_num-1:
if "Cliff" in args.env_name or "Frozen" in args.env_name:
decider.env_history.remove_invalid_state()
decider.env_history.remove_invalid_state()
if logger:
logger.debug(f"Error: {e}, Retry! ({error_i+1}/{retry_num})")
continue
if error_flag:
action = decider.default_action
state_description, reward, termination, truncation, env_info = environment.step_llm(
action
)
decider.env_history.add('action', decider.default_action)
if "Cliff" in args.env_name or "Frozen" in args.env_name:
# decider.env_history.add('reward', reward)
decider.env_history.add('reward', env_info['potential_state'] + environment.reward_desc_dict[reward])
utility += reward
logger.info(f"Seed: {seed}")
logger.info(f'The optimal action is: {decider.default_action}.')
logger.info(f"Now it is round {round}.")
else:
current_total_tokens += tokens
current_total_cost += cost
logger.info(f"Seed: {seed}")
logger.info(f"current_total_tokens: {current_total_tokens}")
logger.info(f"current_total_cost: {current_total_cost}")
logger.info(f"Now it is round {round}.")
# return results
yield environment.render(), state_description, prompt, response, action
if termination or truncation:
if logger:
logger.info(f"Terminated!")
break
time.sleep(10)
decider.env_history.add(
'terminate_state', environment.get_terminate_state(round+1, args.max_episode_len))
decider.env_history.add("cummulative_reward", str(utility))
# Record the final reward
if logger:
logger.info(f"Cummulative reward: {utility}.")
end_time = datetime.datetime.now()
time_diff = end_time - start_time
logger.info(f"Time consumer: {time_diff.total_seconds()} s")
utilities.append(utility)
# TODO: set env sucess utility threshold
if trail < num_trails -1:
if args.decider in ['reflexion']:
if utility < expert_score:
decider.update_mem()
else:
decider.update_mem()
decider.clear_mem()
return utilities
# def pause():
# for i in range(31415926):
# time.sleep(0.1)
# yield i
if __name__ == "__main__":
custom_css = """
#render {
flex-grow: 1;
}
#input_text .tabs {
display: flex;
flex-direction: column;
flex-grow: 1;
}
#input_text .tabitem[style="display: block;"] {
flex-grow: 1;
display: flex !important;
}
#input_text .gap {
flex-grow: 1;
}
#input_text .form {
flex-grow: 1 !important;
}
#input_text .form > :last-child{
flex-grow: 1;
}
"""
with gr.Blocks(theme=gr.themes.Monochrome(), css=custom_css) as demo:
with gr.Row():
env_name = gr.Dropdown(
["RepresentedBoxing-v0",
"RepresentedPong-v0",
"RepresentedMsPacman-v0",
"RepresentedMontezumaRevenge-v0"],
label="Environment Name")
decider = gr.Dropdown(
["naive_actor",
"cot_actor",
"spp_actor",
"reflexion_actor"],
label="Decider")
prompt_level = gr.Dropdown([1, 2, 3, 4, 5], label="Prompt Level")
with gr.Row():
num_trails = gr.Slider(1, 100, 1, label="Number of Trails", scale=2)
seed = gr.Slider(1, 1000, 1, label="Seed", scale=2)
run = gr.Button("Run", scale=1)
# pause_ = gr.Button("Pause")
# resume = gr.Button("Resume")
stop = gr.Button("Stop", scale=1)
with gr.Row():
with gr.Column():
render = gr.Image(label="render", elem_id="render")
with gr.Column(elem_id="input_text"):
state = gr.Textbox(label="translated state")
prompt = gr.Textbox(label="prompt", max_lines=100)
with gr.Row():
response = gr.Textbox(label="response")
action = gr.Textbox(label="parsed action")
run_event = run.click(
fn=main_progress,
inputs=[env_name, decider, prompt_level, num_trails, seed],
outputs=[render, state, prompt, response, action])
stop.click(fn=None, inputs=None, outputs=None, cancels=[run_event])
# pause_event = pause_.click(fn=pause, inputs=None, outputs=None)
# resume.click(fn=None, inputs=None, outputs=None, cancels=[pause_event])
demo.launch(server_name="0.0.0.0", server_port=7860)