Spaces:
Runtime error
Runtime error
ewanlee
commited on
Commit
·
eaa7556
1
Parent(s):
841d805
atari visualization with Gradio
Browse files- .gitignore +4 -1
- deciders/parser.py +3 -3
- environment.yaml +2 -1
- gradio_reflexion.py +312 -0
.gitignore
CHANGED
@@ -186,4 +186,7 @@ main_jarvis.sh
|
|
186 |
test*.py
|
187 |
*.zip
|
188 |
test_
|
189 |
-
*.ipynb
|
|
|
|
|
|
|
|
186 |
test*.py
|
187 |
*.zip
|
188 |
test_
|
189 |
+
*.ipynb
|
190 |
+
|
191 |
+
# gradio
|
192 |
+
flagged
|
deciders/parser.py
CHANGED
@@ -7,10 +7,10 @@ class DisActionModel(BaseModel):
|
|
7 |
@classmethod
|
8 |
def create_validator(cls, max_action):
|
9 |
@validator('action', allow_reuse=True)
|
10 |
-
def action_is_valid(cls,
|
11 |
-
if
|
12 |
raise ValueError(f"Action is not valid ([1, {max_action}])!")
|
13 |
-
return
|
14 |
return action_is_valid
|
15 |
|
16 |
# Generate classes dynamically
|
|
|
7 |
@classmethod
|
8 |
def create_validator(cls, max_action):
|
9 |
@validator('action', allow_reuse=True)
|
10 |
+
def action_is_valid(cls, info):
|
11 |
+
if info not in range(1, max_action + 1):
|
12 |
raise ValueError(f"Action is not valid ([1, {max_action}])!")
|
13 |
+
return info
|
14 |
return action_is_valid
|
15 |
|
16 |
# Generate classes dynamically
|
environment.yaml
CHANGED
@@ -186,4 +186,5 @@ dependencies:
|
|
186 |
- win32-setctime==1.1.0
|
187 |
- yarl==1.9.2
|
188 |
- zipp==3.15.0
|
189 |
-
- git+ssh://git@github.com/hyyh28/atari-representation-learning.git
|
|
|
|
186 |
- win32-setctime==1.1.0
|
187 |
- yarl==1.9.2
|
188 |
- zipp==3.15.0
|
189 |
+
- git+ssh://git@github.com/hyyh28/atari-representation-learning.git
|
190 |
+
- gradio==4.13.0
|
gradio_reflexion.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import envs
|
2 |
+
import deciders
|
3 |
+
import distillers
|
4 |
+
import prompts as task_prompts
|
5 |
+
import datetime
|
6 |
+
import time
|
7 |
+
from envs.translator import InitSummarizer, CurrSummarizer, FutureSummarizer, Translator
|
8 |
+
import gym
|
9 |
+
import pandas as pd
|
10 |
+
import random
|
11 |
+
import datetime
|
12 |
+
from loguru import logger
|
13 |
+
from argparse import Namespace
|
14 |
+
import gradio as gr
|
15 |
+
|
16 |
+
|
17 |
+
def set_seed(seed):
|
18 |
+
random.seed(seed)
|
19 |
+
|
20 |
+
def main_progress(env_name, decider, prompt_level, num_trails, seed):
|
21 |
+
init_summarizer = env_name.split("-")[0] + '_init_translator'
|
22 |
+
curr_summarizer = env_name.split("-")[0] + '_basic_translator'
|
23 |
+
args = Namespace(
|
24 |
+
env_name=env_name,
|
25 |
+
init_summarizer=init_summarizer,
|
26 |
+
curr_summarizer=curr_summarizer,
|
27 |
+
decider=decider,
|
28 |
+
prompt_level=prompt_level,
|
29 |
+
num_trails=num_trails,
|
30 |
+
seed=seed,
|
31 |
+
future_summarizer=None,
|
32 |
+
env="base_env",
|
33 |
+
gpt_version="gpt-3.5-turbo",
|
34 |
+
render="rgb_array",
|
35 |
+
max_episode_len=200,
|
36 |
+
max_query_tokens=5000,
|
37 |
+
max_tokens=2000,
|
38 |
+
distiller="traj_distiller",
|
39 |
+
prompt_path=None,
|
40 |
+
use_short_mem=1,
|
41 |
+
short_mem_num=10,
|
42 |
+
is_only_local_obs=1,
|
43 |
+
api_type="azure",
|
44 |
+
)
|
45 |
+
|
46 |
+
if args.api_type != "azure" and args.api_type != "openai":
|
47 |
+
raise ValueError(f"The {args.api_type} is not supported, please use 'azure' or 'openai' !")
|
48 |
+
|
49 |
+
# Please note when using "azure", the model name is gpt-35-turbo while using "openai", the model name is "gpt-3.5-turbo"
|
50 |
+
if args.api_type == "azure":
|
51 |
+
if args.gpt_version == "gpt-3.5-turbo":
|
52 |
+
args.gpt_version = 'gpt-35-turbo'
|
53 |
+
elif args.api_type == "openai":
|
54 |
+
if args.gpt_version == "gpt-35-turbo":
|
55 |
+
args.gpt_version = 'gpt-3.5-turbo'
|
56 |
+
|
57 |
+
# Get the specified translator, environment, and ChatGPT model
|
58 |
+
env_class = envs.REGISTRY[args.env]
|
59 |
+
init_summarizer = InitSummarizer(envs.REGISTRY[args.init_summarizer], args)
|
60 |
+
curr_summarizer = CurrSummarizer(envs.REGISTRY[args.curr_summarizer])
|
61 |
+
|
62 |
+
if args.future_summarizer:
|
63 |
+
future_summarizer = FutureSummarizer(
|
64 |
+
envs.REGISTRY[args.future_summarizer],
|
65 |
+
envs.REGISTRY["cart_policies"],
|
66 |
+
future_horizon=args.future_horizon,
|
67 |
+
)
|
68 |
+
else:
|
69 |
+
future_summarizer = None
|
70 |
+
|
71 |
+
decider_class = deciders.REGISTRY[args.decider]
|
72 |
+
distiller_class = distillers.REGISTRY[args.distiller]
|
73 |
+
sampling_env = envs.REGISTRY["sampling_wrapper"](gym.make(args.env_name))
|
74 |
+
if args.prompt_level == 5:
|
75 |
+
prompts_class = task_prompts.REGISTRY[(args.env_name,args.decider)]()
|
76 |
+
else:
|
77 |
+
prompts_class = task_prompts.REGISTRY[(args.decider)]()
|
78 |
+
translator = Translator(
|
79 |
+
init_summarizer, curr_summarizer, future_summarizer, env=sampling_env
|
80 |
+
)
|
81 |
+
environment = env_class(
|
82 |
+
gym.make(args.env_name, render_mode=args.render), translator
|
83 |
+
)
|
84 |
+
|
85 |
+
logfile = (
|
86 |
+
f"llm.log/output-{args.env_name}-{args.decider}-{args.gpt_version}-l{args.prompt_level}"
|
87 |
+
f"-{datetime.datetime.now().timestamp()}.log"
|
88 |
+
)
|
89 |
+
|
90 |
+
logfile_reflexion = (
|
91 |
+
f"llm.log/memory-{args.env_name}-{args.decider}-{args.gpt_version}-l{args.prompt_level}"
|
92 |
+
f"-{datetime.datetime.now().timestamp()}.log"
|
93 |
+
)
|
94 |
+
my_distiller = distiller_class(logfile=logfile_reflexion,args=args)
|
95 |
+
|
96 |
+
args.game_description = environment.game_description
|
97 |
+
args.goal_description = environment.goal_description
|
98 |
+
args.action_description = environment.action_description
|
99 |
+
args.action_desc_dict = environment.action_desc_dict
|
100 |
+
args.reward_desc_dict = environment.reward_desc_dict
|
101 |
+
|
102 |
+
logger.add(logfile, colorize=True, enqueue=True, filter=lambda x: '[Reflexion Memory]' not in x['message'])
|
103 |
+
|
104 |
+
decider = decider_class(environment.env.action_space, args, prompts_class, my_distiller, temperature=0.0, logger=logger, max_tokens=args.max_tokens)
|
105 |
+
|
106 |
+
# Evaluate the translator
|
107 |
+
utilities = []
|
108 |
+
df = pd.read_csv('record_reflexion.csv', sep=',')
|
109 |
+
filtered_df = df[(df['env'] == args.env_name) & (df['decider'] == 'expert') & (df['level'] == 1)]
|
110 |
+
expert_score = filtered_df['avg_score'].item()
|
111 |
+
seeds = [i for i in range(1000)]
|
112 |
+
# prompt_file = "prompt.txt"
|
113 |
+
# f = open(prompt_file,"w+")
|
114 |
+
num_trails = args.num_trails
|
115 |
+
if not "Blackjack" in args.env_name:
|
116 |
+
curriculums = 1
|
117 |
+
else:
|
118 |
+
curriculums = 20
|
119 |
+
for curriculum in range(curriculums):
|
120 |
+
for trail in range(num_trails):
|
121 |
+
if "Blackjack" in args.env_name:
|
122 |
+
seed = seeds[curriculum*curriculums + num_trails - trail - 1]
|
123 |
+
else:
|
124 |
+
seed = args.seed
|
125 |
+
|
126 |
+
# single run
|
127 |
+
# Reset the environment
|
128 |
+
if not "Blackjack" in args.env_name:
|
129 |
+
set_seed(args.seed)
|
130 |
+
seed = args.seed
|
131 |
+
# Reset the environment
|
132 |
+
state_description, env_info = environment.reset(seed=args.seed)
|
133 |
+
else:
|
134 |
+
set_seed(seed)
|
135 |
+
# Reset the environment
|
136 |
+
state_description, env_info = environment.reset(seed=seed)
|
137 |
+
game_description = environment.get_game_description()
|
138 |
+
goal_description = environment.get_goal_description()
|
139 |
+
action_description = environment.get_action_description()
|
140 |
+
|
141 |
+
# Initialize the statistics
|
142 |
+
frames = []
|
143 |
+
utility = 0
|
144 |
+
current_total_tokens = 0
|
145 |
+
current_total_cost = 0
|
146 |
+
start_time = datetime.datetime.now()
|
147 |
+
# Run the game for a maximum number of steps
|
148 |
+
for round in range(args.max_episode_len):
|
149 |
+
# Keep asking ChatGPT for an action until it provides a valid one
|
150 |
+
error_flag = True
|
151 |
+
retry_num = 1
|
152 |
+
for error_i in range(retry_num):
|
153 |
+
try:
|
154 |
+
action, prompt, response, tokens, cost = decider.act(
|
155 |
+
state_description,
|
156 |
+
action_description,
|
157 |
+
env_info,
|
158 |
+
game_description,
|
159 |
+
goal_description,
|
160 |
+
logfile
|
161 |
+
)
|
162 |
+
|
163 |
+
state_description, reward, termination, truncation, env_info = environment.step_llm(
|
164 |
+
action
|
165 |
+
)
|
166 |
+
if "Cliff" in args.env_name or "Frozen" in args.env_name:
|
167 |
+
decider.env_history.add('reward', env_info['potential_state'] + environment.reward_desc_dict[reward])
|
168 |
+
else:
|
169 |
+
decider.env_history.add('reward', f"The player get rewards {reward}.")
|
170 |
+
|
171 |
+
utility += reward
|
172 |
+
|
173 |
+
# Update the statistics
|
174 |
+
current_total_tokens += tokens
|
175 |
+
current_total_cost += cost
|
176 |
+
error_flag = False
|
177 |
+
break
|
178 |
+
except Exception as e:
|
179 |
+
print(e)
|
180 |
+
if error_i < retry_num-1:
|
181 |
+
if "Cliff" in args.env_name or "Frozen" in args.env_name:
|
182 |
+
decider.env_history.remove_invalid_state()
|
183 |
+
decider.env_history.remove_invalid_state()
|
184 |
+
if logger:
|
185 |
+
logger.debug(f"Error: {e}, Retry! ({error_i+1}/{retry_num})")
|
186 |
+
continue
|
187 |
+
if error_flag:
|
188 |
+
action = decider.default_action
|
189 |
+
state_description, reward, termination, truncation, env_info = environment.step_llm(
|
190 |
+
action
|
191 |
+
)
|
192 |
+
|
193 |
+
decider.env_history.add('action', decider.default_action)
|
194 |
+
|
195 |
+
if "Cliff" in args.env_name or "Frozen" in args.env_name:
|
196 |
+
# decider.env_history.add('reward', reward)
|
197 |
+
decider.env_history.add('reward', env_info['potential_state'] + environment.reward_desc_dict[reward])
|
198 |
+
utility += reward
|
199 |
+
|
200 |
+
|
201 |
+
logger.info(f"Seed: {seed}")
|
202 |
+
logger.info(f'The optimal action is: {decider.default_action}.')
|
203 |
+
logger.info(f"Now it is round {round}.")
|
204 |
+
else:
|
205 |
+
current_total_tokens += tokens
|
206 |
+
current_total_cost += cost
|
207 |
+
logger.info(f"Seed: {seed}")
|
208 |
+
logger.info(f"current_total_tokens: {current_total_tokens}")
|
209 |
+
logger.info(f"current_total_cost: {current_total_cost}")
|
210 |
+
logger.info(f"Now it is round {round}.")
|
211 |
+
|
212 |
+
# return results
|
213 |
+
yield environment.render(), state_description, prompt, response, action
|
214 |
+
|
215 |
+
if termination or truncation:
|
216 |
+
if logger:
|
217 |
+
logger.info(f"Terminated!")
|
218 |
+
break
|
219 |
+
time.sleep(10)
|
220 |
+
decider.env_history.add(
|
221 |
+
'terminate_state', environment.get_terminate_state(round+1, args.max_episode_len))
|
222 |
+
decider.env_history.add("cummulative_reward", str(utility))
|
223 |
+
# Record the final reward
|
224 |
+
if logger:
|
225 |
+
logger.info(f"Cummulative reward: {utility}.")
|
226 |
+
end_time = datetime.datetime.now()
|
227 |
+
time_diff = end_time - start_time
|
228 |
+
logger.info(f"Time consumer: {time_diff.total_seconds()} s")
|
229 |
+
|
230 |
+
utilities.append(utility)
|
231 |
+
# TODO: set env sucess utility threshold
|
232 |
+
if trail < num_trails -1:
|
233 |
+
if args.decider in ['reflexion']:
|
234 |
+
if utility < expert_score:
|
235 |
+
decider.update_mem()
|
236 |
+
else:
|
237 |
+
decider.update_mem()
|
238 |
+
decider.clear_mem()
|
239 |
+
return utilities
|
240 |
+
|
241 |
+
# def pause():
|
242 |
+
# for i in range(31415926):
|
243 |
+
# time.sleep(0.1)
|
244 |
+
# yield i
|
245 |
+
|
246 |
+
if __name__ == "__main__":
|
247 |
+
custom_css = """
|
248 |
+
#render {
|
249 |
+
flex-grow: 1;
|
250 |
+
}
|
251 |
+
#input_text .tabs {
|
252 |
+
display: flex;
|
253 |
+
flex-direction: column;
|
254 |
+
flex-grow: 1;
|
255 |
+
}
|
256 |
+
#input_text .tabitem[style="display: block;"] {
|
257 |
+
flex-grow: 1;
|
258 |
+
display: flex !important;
|
259 |
+
}
|
260 |
+
#input_text .gap {
|
261 |
+
flex-grow: 1;
|
262 |
+
}
|
263 |
+
#input_text .form {
|
264 |
+
flex-grow: 1 !important;
|
265 |
+
}
|
266 |
+
#input_text .form > :last-child{
|
267 |
+
flex-grow: 1;
|
268 |
+
}
|
269 |
+
"""
|
270 |
+
|
271 |
+
with gr.Blocks(theme=gr.themes.Monochrome(), css=custom_css) as demo:
|
272 |
+
with gr.Row():
|
273 |
+
env_name = gr.Dropdown(
|
274 |
+
["RepresentedBoxing-v0",
|
275 |
+
"RepresentedPong-v0",
|
276 |
+
"RepresentedMsPacman-v0",
|
277 |
+
"RepresentedMontezumaRevenge-v0"],
|
278 |
+
label="Environment Name")
|
279 |
+
decider = gr.Dropdown(
|
280 |
+
["naive_actor",
|
281 |
+
"cot_actor",
|
282 |
+
"spp_actor",
|
283 |
+
"reflexion_actor"],
|
284 |
+
label="Decider")
|
285 |
+
prompt_level = gr.Dropdown([1, 2, 3, 4, 5], label="Prompt Level")
|
286 |
+
with gr.Row():
|
287 |
+
num_trails = gr.Slider(1, 100, 1, label="Number of Trails", scale=2)
|
288 |
+
seed = gr.Slider(1, 1000, 1, label="Seed", scale=2)
|
289 |
+
run = gr.Button("Run", scale=1)
|
290 |
+
# pause_ = gr.Button("Pause")
|
291 |
+
# resume = gr.Button("Resume")
|
292 |
+
stop = gr.Button("Stop", scale=1)
|
293 |
+
with gr.Row():
|
294 |
+
with gr.Column():
|
295 |
+
render = gr.Image(label="render", elem_id="render")
|
296 |
+
with gr.Column(elem_id="input_text"):
|
297 |
+
state = gr.Textbox(label="translated state")
|
298 |
+
prompt = gr.Textbox(label="prompt", max_lines=100)
|
299 |
+
with gr.Row():
|
300 |
+
response = gr.Textbox(label="response")
|
301 |
+
action = gr.Textbox(label="parsed action")
|
302 |
+
run_event = run.click(
|
303 |
+
fn=main_progress,
|
304 |
+
inputs=[env_name, decider, prompt_level, num_trails, seed],
|
305 |
+
outputs=[render, state, prompt, response, action])
|
306 |
+
stop.click(fn=None, inputs=None, outputs=None, cancels=[run_event])
|
307 |
+
# pause_event = pause_.click(fn=pause, inputs=None, outputs=None)
|
308 |
+
# resume.click(fn=None, inputs=None, outputs=None, cancels=[pause_event])
|
309 |
+
|
310 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
311 |
+
|
312 |
+
|