Text-Gym-Agents / app.py
ewanlee's picture
Synced repo using 'sync_with_huggingface' Github Action
a2afd48
import envs
import deciders
import distillers
import prompts as task_prompts
import datetime
import time
from envs.translator import InitSummarizer, CurrSummarizer, FutureSummarizer, Translator
import gym
import pandas as pd
import random
import datetime
from loguru import logger
from argparse import Namespace
import gradio as gr
import subprocess
import openai
import os
import shutil
import subprocess
from pathlib import Path
from urllib.request import urlretrieve
def set_seed(seed):
random.seed(seed)
def main_progress(
api_type, openai_key, env_name, decider_name,
prompt_level, num_trails, seed
):
init_summarizer = env_name.split("-")[0] + '_init_translator'
curr_summarizer = env_name.split("-")[0] + '_basic_translator'
if "Represented" not in init_summarizer:
init_summarizer = init_summarizer.lower()
curr_summarizer = curr_summarizer.lower()
args = Namespace(
env_name=env_name,
init_summarizer=init_summarizer,
curr_summarizer=curr_summarizer,
decider=decider_name,
prompt_level=prompt_level,
num_trails=num_trails,
seed=seed,
future_summarizer=None,
env="base_env",
gpt_version="gpt-3.5-turbo",
render="rgb_array",
max_episode_len=200,
max_query_tokens=5000,
max_tokens=2000,
distiller="traj_distiller",
prompt_path=None,
use_short_mem=1,
short_mem_num=10,
is_only_local_obs=1,
api_type=api_type,
)
if args.api_type != "azure" and args.api_type != "openai":
raise ValueError(f"The {args.api_type} is not supported, please use 'azure' or 'openai' !")
# Please note when using "azure", the model name is gpt-35-turbo while using "openai", the model name is "gpt-3.5-turbo"
if args.api_type == "azure":
if args.gpt_version == "gpt-3.5-turbo":
args.gpt_version = 'gpt-35-turbo'
elif args.api_type == "openai":
if args.gpt_version == "gpt-35-turbo":
args.gpt_version = 'gpt-3.5-turbo'
# Get the specified translator, environment, and ChatGPT model
env_class = envs.REGISTRY[args.env]
init_summarizer = InitSummarizer(envs.REGISTRY[args.init_summarizer], args)
curr_summarizer = CurrSummarizer(envs.REGISTRY[args.curr_summarizer])
if args.future_summarizer:
future_summarizer = FutureSummarizer(
envs.REGISTRY[args.future_summarizer],
envs.REGISTRY["cart_policies"],
future_horizon=args.future_horizon,
)
else:
future_summarizer = None
decider_class = deciders.REGISTRY[args.decider]
distiller_class = distillers.REGISTRY[args.distiller]
sampling_env = envs.REGISTRY["sampling_wrapper"](gym.make(args.env_name))
if args.prompt_level == 5:
prompts_class = task_prompts.REGISTRY[(args.env_name,args.decider)]()
else:
prompts_class = task_prompts.REGISTRY[(args.decider)]()
translator = Translator(
init_summarizer, curr_summarizer, future_summarizer, env=sampling_env
)
environment = env_class(
gym.make(args.env_name, render_mode=args.render), translator
)
logfile = (
f"llm.log/output-{args.env_name}-{args.decider}-{args.gpt_version}-l{args.prompt_level}"
f"-{datetime.datetime.now().timestamp()}.log"
)
logfile_reflexion = (
f"llm.log/memory-{args.env_name}-{args.decider}-{args.gpt_version}-l{args.prompt_level}"
f"-{datetime.datetime.now().timestamp()}.log"
)
my_distiller = distiller_class(logfile=logfile_reflexion,args=args)
args.game_description = environment.game_description
args.goal_description = environment.goal_description
args.action_description = environment.action_description
args.action_desc_dict = environment.action_desc_dict
args.reward_desc_dict = environment.reward_desc_dict
logger.add(logfile, colorize=True, enqueue=True, filter=lambda x: '[Reflexion Memory]' not in x['message'])
decider = decider_class(openai_key, environment.env.action_space, args, prompts_class, my_distiller, temperature=0.0, logger=logger, max_tokens=args.max_tokens)
# Evaluate the translator
utilities = []
df = pd.read_csv('record_reflexion.csv', sep=',')
filtered_df = df[(df['env'] == args.env_name) & (df['decider'] == 'expert') & (df['level'] == 1)]
expert_score = filtered_df['avg_score'].item()
seeds = [i for i in range(1000)]
# prompt_file = "prompt.txt"
# f = open(prompt_file,"w+")
num_trails = args.num_trails
if not "Blackjack" in args.env_name:
curriculums = 1
else:
curriculums = 20
for curriculum in range(curriculums):
for trail in range(num_trails):
if "Blackjack" in args.env_name:
seed = seeds[curriculum*curriculums + num_trails - trail - 1]
else:
seed = args.seed
# single run
# Reset the environment
if not "Blackjack" in args.env_name:
set_seed(args.seed)
seed = args.seed
# Reset the environment
state_description, env_info = environment.reset(seed=args.seed)
else:
set_seed(seed)
# Reset the environment
state_description, env_info = environment.reset(seed=seed)
game_description = environment.get_game_description()
goal_description = environment.get_goal_description()
action_description = environment.get_action_description()
# Initialize the statistics
frames = []
utility = 0
current_total_tokens = 0
current_total_cost = 0
# state_description, prompt, response, action = None, None, None, None
start_time = datetime.datetime.now()
# Run the game for a maximum number of steps
for round in range(args.max_episode_len):
# Keep asking ChatGPT for an action until it provides a valid one
error_flag = True
retry_num = 1
for error_i in range(retry_num):
try:
action, prompt, response, tokens, cost = decider.act(
state_description,
action_description,
env_info,
game_description,
goal_description,
logfile
)
state_description, reward, termination, truncation, env_info = environment.step_llm(
action
)
if "Cliff" in args.env_name or "Frozen" in args.env_name:
decider.env_history.add('reward', env_info['potential_state'] + environment.reward_desc_dict[reward])
else:
decider.env_history.add('reward', f"The player get rewards {reward}.")
utility += reward
# Update the statistics
current_total_tokens += tokens
current_total_cost += cost
error_flag = False
break
except Exception as e:
print(e)
raise e
if error_i < retry_num-1:
if "Cliff" in args.env_name or "Frozen" in args.env_name:
decider.env_history.remove_invalid_state()
decider.env_history.remove_invalid_state()
if logger:
logger.debug(f"Error: {e}, Retry! ({error_i+1}/{retry_num})")
continue
if error_flag:
action = decider.default_action
state_description, reward, termination, truncation, env_info = environment.step_llm(
action
)
decider.env_history.add('action', decider.default_action)
if "Cliff" in args.env_name or "Frozen" in args.env_name:
# decider.env_history.add('reward', reward)
decider.env_history.add('reward', env_info['potential_state'] + environment.reward_desc_dict[reward])
utility += reward
logger.info(f"Seed: {seed}")
logger.info(f'The optimal action is: {decider.default_action}.')
logger.info(f"Now it is round {round}.")
else:
current_total_tokens += tokens
current_total_cost += cost
logger.info(f"Seed: {seed}")
logger.info(f"current_total_tokens: {current_total_tokens}")
logger.info(f"current_total_cost: {current_total_cost}")
logger.info(f"Now it is round {round}.")
# return results
yield environment.render(), state_description, prompt, response, action
if termination or truncation:
if logger:
logger.info(f"Terminated!")
break
time.sleep(5)
decider.env_history.add(
'terminate_state', environment.get_terminate_state(round+1, args.max_episode_len))
decider.env_history.add("cummulative_reward", str(utility))
# Record the final reward
if logger:
logger.info(f"Cummulative reward: {utility}.")
end_time = datetime.datetime.now()
time_diff = end_time - start_time
logger.info(f"Time consumer: {time_diff.total_seconds()} s")
utilities.append(utility)
# TODO: set env sucess utility threshold
if trail < num_trails -1:
if args.decider in ['reflexion']:
if utility < expert_score:
decider.update_mem()
else:
decider.update_mem()
decider.clear_mem()
return utilities
# def pause():
# for i in range(31415926):
# time.sleep(0.1)
# yield i
if __name__ == "__main__":
# Github action test 8
# install Atari ROMs
subprocess.run(['AutoROM', '--accept-license'])
# install mujoco
# Step 1: Download and set up MuJoCo
MUJOCO_URL = "https://github.com/google-deepmind/mujoco/releases/download/2.1.0/mujoco210-linux-x86_64.tar.gz"
MUJOCO_FILENAME = "mujoco210-linux-x86_64.tar.gz"
# Download MuJoCo
print("Downloading MuJoCo...")
urlretrieve(MUJOCO_URL, MUJOCO_FILENAME)
# Create and move to ~/.mujoco directory
mujoco_dir = Path.home() / ".mujoco"
mujoco_dir.mkdir(exist_ok=True)
shutil.move(MUJOCO_FILENAME, str(mujoco_dir / MUJOCO_FILENAME))
# Extract the file
print("Extracting MuJoCo...")
subprocess.run(["tar", "-zxvf", str(mujoco_dir / MUJOCO_FILENAME)], cwd=mujoco_dir)
# Edit .bashrc
bashrc_path = Path.home() / ".bashrc"
mujoco_path = mujoco_dir / "mujoco210" / "bin"
export_line = f"export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:{mujoco_path}\n"
with open(bashrc_path, "a") as bashrc_file:
bashrc_file.write(export_line)
# Set LD_LIBRARY_PATH for the current process
ld_lib_path = os.environ.get("LD_LIBRARY_PATH", "")
new_ld_lib_path = f"{ld_lib_path}{mujoco_path}"
os.environ["LD_LIBRARY_PATH"] = new_ld_lib_path
# Step 2: Install gym[mujoco]
print("Installing gym[MuJoCo]...")
subprocess.run(["pip", "install", "gym[mujoco]"])
# # Set render
os.environ["MUJOCO_GL"] = "egl"
# os.environ["DISPLAY"] = ":0"
# print(f'LD_LIBRARY_PATH: {os.environ["LD_LIBRARY_PATH"]}')
# assert os.path.exists(str(mujoco_path))
# subprocess.run("cp -r /home/user/.mujoco/mujoco210/bin/* /usr/lib/", shell=True)
# import mujoco_py
# flag = 'gpu' in str(mujoco_py.cymj).split('/')[-1]
# print(f'flag: {flag}')
# if not flag:
# ld_lib_path = os.environ.get("LD_LIBRARY_PATH", "")
# new_ld_lib_path = f"{ld_lib_path}:/usr/lib/nvidia-000"
# os.environ["LD_LIBRARY_PATH"] = new_ld_lib_path
# subprocess.run(["sudo", "mkdir", "-p", "/usr/lib/nvidia-000"])
# assert 'gpu' in str(mujoco_py.cymj).split('/')[-1]
custom_css = """
#render {
flex-grow: 1;
}
#input_text .tabs {
display: flex;
flex-direction: column;
flex-grow: 1;
}
#input_text .tabitem[style="display: block;"] {
flex-grow: 1;
display: flex !important;
}
#input_text .gap {
flex-grow: 1;
}
#input_text .form {
flex-grow: 1 !important;
}
#input_text .form > :last-child{
flex-grow: 1;
}
"""
with gr.Blocks(theme=gr.themes.Monochrome(), css=custom_css) as demo:
with gr.Row():
api_type = gr.Dropdown(["azure", "openai"], label="API Type", scale=1)
openai_key = gr.Textbox(label="OpenAI API Key", type="password", scale=3)
with gr.Row():
env_name = gr.Dropdown(
["CartPole-v0",
"LunarLander-v2",
"Acrobot-v1",
"MountainCar-v0",
"Blackjack-v1",
"Taxi-v3",
"CliffWalking-v0",
"FrozenLake-v1",
"MountainCarContinuous-v0",
"Ant-v4",
"HalfCheetah-v4",
"Hopper-v4",
"Walker2d-v4",
"Swimmer-v4",
"Reacher-v4",
"Pusher-v4",
"RepresentedBoxing-v0",
"RepresentedPong-v0",
"RepresentedMsPacman-v0",
"RepresentedMontezumaRevenge-v0"],
label="Environment Name")
decider_name = gr.Dropdown(
["naive_actor",
"cot_actor",
"spp_actor",
"reflexion_actor"],
label="Decider")
# prompt_level = gr.Dropdown([1, 2, 3, 4, 5], label="Prompt Level")
# TODO: support more prompt levels
prompt_level = gr.Dropdown([1, 3], label="Prompt Level")
with gr.Row():
num_trails = gr.Slider(1, 100, 1, label="Number of Trails", scale=2)
seed = gr.Slider(1, 1000, 1, label="Seed", scale=2)
run = gr.Button("Run", scale=1)
# pause_ = gr.Button("Pause")
# resume = gr.Button("Resume")
stop = gr.Button("Stop", scale=1)
with gr.Row():
with gr.Column():
render = gr.Image(label="render", elem_id="render")
with gr.Column(elem_id="input_text"):
state = gr.Textbox(label="translated state")
prompt = gr.Textbox(label="prompt", max_lines=20)
with gr.Row():
response = gr.Textbox(label="response")
action = gr.Textbox(label="parsed action")
run_event = run.click(
fn=main_progress,
inputs=[
api_type, openai_key, env_name,
decider_name, prompt_level, num_trails, seed],
outputs=[render, state, prompt, response, action])
stop.click(fn=None, inputs=None, outputs=None, cancels=[run_event])
# pause_event = pause_.click(fn=pause, inputs=None, outputs=None)
# resume.click(fn=None, inputs=None, outputs=None, cancels=[pause_event])
demo.launch()