ewanlee commited on
Commit
a2afd48
·
1 Parent(s): 5f8fd68

Synced repo using 'sync_with_huggingface' Github Action

Browse files
app.py CHANGED
@@ -260,6 +260,7 @@ def main_progress(
260
 
261
  if __name__ == "__main__":
262
 
 
263
 
264
  # install Atari ROMs
265
  subprocess.run(['AutoROM', '--accept-license'])
@@ -357,6 +358,12 @@ if __name__ == "__main__":
357
  "FrozenLake-v1",
358
  "MountainCarContinuous-v0",
359
  "Ant-v4",
 
 
 
 
 
 
360
  "RepresentedBoxing-v0",
361
  "RepresentedPong-v0",
362
  "RepresentedMsPacman-v0",
 
260
 
261
  if __name__ == "__main__":
262
 
263
+ # Github action test 8
264
 
265
  # install Atari ROMs
266
  subprocess.run(['AutoROM', '--accept-license'])
 
358
  "FrozenLake-v1",
359
  "MountainCarContinuous-v0",
360
  "Ant-v4",
361
+ "HalfCheetah-v4",
362
+ "Hopper-v4",
363
+ "Walker2d-v4",
364
+ "Swimmer-v4",
365
+ "Reacher-v4",
366
+ "Pusher-v4",
367
  "RepresentedBoxing-v0",
368
  "RepresentedPong-v0",
369
  "RepresentedMsPacman-v0",
deciders/act.py CHANGED
@@ -26,7 +26,7 @@ class RandomAct():
26
  return action, '', '', '', 0, 0
27
 
28
  class NaiveAct(gpt):
29
- def __init__(self, action_space, args, prompts, distiller, temperature=0.0, max_tokens=2048, logger=None):
30
  self.action_space = action_space
31
  self.temperature = temperature
32
  self.action_desc_dict = args.action_desc_dict
@@ -39,7 +39,7 @@ class NaiveAct(gpt):
39
  else:
40
  model = args.gpt_version
41
  self.encoding = tiktoken.encoding_for_model(model)
42
- super().__init__(args)
43
  self.distiller = distiller
44
  self.fewshot_example_initialization(args.prompt_level, args.prompt_path, distiller = self.distiller)
45
  if isinstance(self.action_space, Discrete):
 
26
  return action, '', '', '', 0, 0
27
 
28
  class NaiveAct(gpt):
29
+ def __init__(self, openai_key, action_space, args, prompts, distiller, temperature=0.0, max_tokens=2048, logger=None):
30
  self.action_space = action_space
31
  self.temperature = temperature
32
  self.action_desc_dict = args.action_desc_dict
 
39
  else:
40
  model = args.gpt_version
41
  self.encoding = tiktoken.encoding_for_model(model)
42
+ super().__init__(args, openai_key)
43
  self.distiller = distiller
44
  self.fewshot_example_initialization(args.prompt_level, args.prompt_path, distiller = self.distiller)
45
  if isinstance(self.action_space, Discrete):
deciders/cot.py CHANGED
@@ -17,8 +17,8 @@ from .utils import run_chain
17
 
18
 
19
  class ChainOfThought(NaiveAct):
20
- def __init__(self, action_space, args, prompts, distiller, temperature=0.1, max_tokens=None, logger=None):
21
- super().__init__(action_space, args, prompts, distiller, temperature, max_tokens,logger)
22
 
23
  def act(
24
  self,
 
17
 
18
 
19
  class ChainOfThought(NaiveAct):
20
+ def __init__(self, openai_key, action_space, args, prompts, distiller, temperature=0.1, max_tokens=None, logger=None):
21
+ super().__init__(openai_key, action_space, args, prompts, distiller, temperature, max_tokens,logger)
22
 
23
  def act(
24
  self,
deciders/exe.py CHANGED
@@ -20,8 +20,8 @@ from loguru import logger
20
 
21
 
22
  class EXE(NaiveAct):
23
- def __init__(self, action_space, args, prompts, distiller, temperature=0., max_tokens=None, logger=None, fixed_suggestion=None, fixed_insight=None):
24
- super().__init__(action_space, args, prompts, distiller, temperature, max_tokens, logger)
25
  self.pre_memory = []
26
  self.post_memory = []
27
  self.is_first = True
 
20
 
21
 
22
  class EXE(NaiveAct):
23
+ def __init__(self, openai_key, action_space, args, prompts, distiller, temperature=0., max_tokens=None, logger=None, fixed_suggestion=None, fixed_insight=None):
24
+ super().__init__(openai_key, action_space, args, prompts, distiller, temperature, max_tokens, logger)
25
  self.pre_memory = []
26
  self.post_memory = []
27
  self.is_first = True
deciders/reflexion.py CHANGED
@@ -19,8 +19,8 @@ from .utils import run_chain
19
 
20
 
21
  class Reflexion(NaiveAct):
22
- def __init__(self, action_space, args, prompts, distiller, temperature=0.1, max_tokens=None, logger=None):
23
- super().__init__(action_space, args, prompts, distiller, temperature, max_tokens, logger)
24
 
25
  def num_tokens_from_string(self,string: str) -> int:
26
  """Returns the number of tokens in a text string."""
 
19
 
20
 
21
  class Reflexion(NaiveAct):
22
+ def __init__(self, openai_key, action_space, args, prompts, distiller, temperature=0.1, max_tokens=None, logger=None):
23
+ super().__init__(openai_key, action_space, args, prompts, distiller, temperature, max_tokens, logger)
24
 
25
  def num_tokens_from_string(self,string: str) -> int:
26
  """Returns the number of tokens in a text string."""
deciders/self_consistency.py CHANGED
@@ -17,9 +17,9 @@ from .utils import run_chain
17
 
18
 
19
  class SelfConsistency(NaiveAct):
20
- def __init__(self, action_space, args, prompts, distiller, temperature=0.1, max_tokens=None, logger=None):
21
  temperature = 0.7
22
- super().__init__(action_space, args, prompts, distiller, temperature, max_tokens, logger)
23
  self.temperature = temperature
24
 
25
  def act(
 
17
 
18
 
19
  class SelfConsistency(NaiveAct):
20
+ def __init__(self, openai_key, action_space, args, prompts, distiller, temperature=0.1, max_tokens=None, logger=None):
21
  temperature = 0.7
22
+ super().__init__(openai_key, action_space, args, prompts, distiller, temperature, max_tokens, logger)
23
  self.temperature = temperature
24
 
25
  def act(
deciders/selfask.py CHANGED
@@ -17,8 +17,8 @@ from .utils import run_chain
17
 
18
 
19
  class SelfAskAct(NaiveAct):
20
- def __init__(self, action_space, args, prompts, distiller, temperature=0.1, max_tokens=None, logger=None):
21
- super().__init__(action_space, args, prompts, distiller, temperature, max_tokens,logger)
22
 
23
  def act(
24
  self,
 
17
 
18
 
19
  class SelfAskAct(NaiveAct):
20
+ def __init__(self, openai_key, action_space, args, prompts, distiller, temperature=0.1, max_tokens=None, logger=None):
21
+ super().__init__(openai_key, action_space, args, prompts, distiller, temperature, max_tokens,logger)
22
 
23
  def act(
24
  self,
deciders/spp.py CHANGED
@@ -16,8 +16,8 @@ from .act import NaiveAct
16
  from .utils import run_chain
17
 
18
  class SPP(NaiveAct):
19
- def __init__(self, action_space, args, prompts, distiller, temperature=0.1, max_tokens=None, logger=None):
20
- super().__init__(action_space, args, prompts, distiller, temperature, max_tokens, logger)
21
 
22
  def act(
23
  self,
 
16
  from .utils import run_chain
17
 
18
  class SPP(NaiveAct):
19
+ def __init__(self, openai_key, action_space, args, prompts, distiller, temperature=0.1, max_tokens=None, logger=None):
20
+ super().__init__(openai_key, action_space, args, prompts, distiller, temperature, max_tokens, logger)
21
 
22
  def act(
23
  self,
deciders/utils.py CHANGED
@@ -19,8 +19,30 @@ Model = Literal["gpt-4", "gpt-35-turbo", "text-davinci-003"]
19
  # from .gpt import gpt
20
  # gpt().__init__()
21
 
22
- import timeout_decorator
23
- @timeout_decorator.timeout(30)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  def run_chain(chain, *args, **kwargs):
25
  return chain.run(*args, **kwargs)
26
 
@@ -54,6 +76,7 @@ def get_completion(prompt: str, api_type: str = "azure", engine: str = "gpt-35-t
54
  temperature=temperature,
55
  # request_timeout = 1
56
  )
 
57
  return response.choices[0]["message"]["content"]
58
 
59
  # @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
@@ -85,5 +108,4 @@ def get_chat(prompt: str, api_type: str = "azure", model: str = "gpt-35-turbo",
85
  temperature=temperature,
86
  # request_timeout = 1
87
  )
88
- return response.choices[0]["message"]["content"]
89
-
 
19
  # from .gpt import gpt
20
  # gpt().__init__()
21
 
22
+ # import timeout_decorator
23
+ # @timeout_decorator.timeout(30)
24
+ # def run_chain(chain, *args, **kwargs):
25
+ # return chain.run(*args, **kwargs)
26
+ import concurrent.futures
27
+
28
+ def timeout_decorator(timeout):
29
+ def decorator(function):
30
+ def wrapper(*args, **kwargs):
31
+ with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
32
+ future = executor.submit(function, *args, **kwargs)
33
+ try:
34
+ return future.result(timeout)
35
+ except concurrent.futures.TimeoutError:
36
+ raise RuntimeError(
37
+ f"Function '{function.__name__}' timed out after {timeout} seconds"
38
+ )
39
+ except Exception as e:
40
+ raise e
41
+ return wrapper
42
+ return decorator
43
+
44
+
45
+ @timeout_decorator(30)
46
  def run_chain(chain, *args, **kwargs):
47
  return chain.run(*args, **kwargs)
48
 
 
76
  temperature=temperature,
77
  # request_timeout = 1
78
  )
79
+ import pdb; pdb.set_trace()
80
  return response.choices[0]["message"]["content"]
81
 
82
  # @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
 
108
  temperature=temperature,
109
  # request_timeout = 1
110
  )
111
+ return response.choices[0]["message"]["content"]
 
envs/__init__.py CHANGED
@@ -18,24 +18,25 @@ from .atari import mspacman_policies, mspacman_translator
18
  from .atari import montezumarevenge_policies, montezumarevenge_translator
19
  register_environments()
20
 
 
21
 
22
  REGISTRY = {}
23
  REGISTRY["sampling_wrapper"] = SettableStateEnv
24
  REGISTRY["base_env"] = BaseEnv
25
- REGISTRY["cart_init_translator"] = cartpole_translator.GameDescriber
26
- REGISTRY["cart_basic_translator"] = cartpole_translator.BasicStateSequenceTranslator
27
  REGISTRY["acrobot_init_translator"] = acrobot_translator.GameDescriber
28
  REGISTRY["acrobot_basic_translator"] = acrobot_translator.BasicStateSequenceTranslator
29
  REGISTRY["mountaincar_init_translator"] = mountaincar_translator.GameDescriber
30
  REGISTRY["mountaincar_basic_translator"] = mountaincar_translator.BasicStateSequenceTranslator
31
 
32
- REGISTRY["cart_policies"] = [cartpole_policies.dedicated_1_policy, cartpole_policies.dedicated_2_policy, cartpole_policies.pseudo_random_policy, cartpole_policies.real_random_policy]
33
  REGISTRY["acrobot_policies"] = [acrobot_policies.dedicated_1_policy, acrobot_policies.dedicated_2_policy, acrobot_policies.dedicated_3_policy, acrobot_policies.pseudo_random_policy, acrobot_policies.real_random_policy]
34
  REGISTRY["mountaincar_policies"] = [mountaincar_policies.dedicated_1_policy, mountaincar_policies.dedicated_2_policy, mountaincar_policies.dedicated_3_policy, mountaincar_policies.pseudo_random_policy, mountaincar_policies.real_random_policy]
35
 
36
- REGISTRY["lunarLander_init_translator"] = LunarLander_translator.GameDescriber
37
- REGISTRY["lunarLander_basic_translator"] = LunarLander_translator.BasicStateSequenceTranslator
38
- REGISTRY["lunarLander_policies"] = [LunarLander_policies.dedicated_1_policy, LunarLander_policies.dedicated_2_policy, LunarLander_policies.dedicated_3_policy,LunarLander_policies.dedicated_4_policy, LunarLander_policies.pseudo_random_policy, LunarLander_policies.real_random_policy]
39
 
40
  REGISTRY["blackjack_init_translator"] = blackjack_translator.GameDescriber
41
  REGISTRY["blackjack_basic_translator"] = blackjack_translator.BasicStateSequenceTranslator
@@ -54,9 +55,9 @@ REGISTRY["frozenlake_basic_translator"] = frozenlake_translator.BasicStateSequen
54
  REGISTRY["frozenlake_policies"] = [frozenlake_policies.dedicated_1_policy, frozenlake_policies.dedicated_2_policy, frozenlake_policies.dedicated_3_policy, frozenlake_policies.dedicated_4_policy, frozenlake_policies.pseudo_random_policy, frozenlake_policies.real_random_policy]
55
 
56
 
57
- REGISTRY["mountaincarContinuous_init_translator"] = mountaincarContinuous_translator.GameDescriber
58
- REGISTRY["mountaincarContinuous_basic_translator"] = mountaincarContinuous_translator.BasicStateSequenceTranslator
59
- REGISTRY["mountaincarContinuous_policies"] = [mountaincarContinuous_policies.pseudo_random_policy, mountaincarContinuous_policies.real_random_policy]
60
 
61
 
62
  REGISTRY["RepresentedBoxing_init_translator"] = Boxing_translator.GameDescriber
@@ -138,47 +139,6 @@ REGISTRY["RepresentedMontezumaRevenge_basic_policies"] = [
138
  montezumarevenge_policies.dedicated_18_policy,
139
  ]
140
 
141
- REGISTRY["RepresentedMsPacman_init_translator"] = mspacman_translator.GameDescriber
142
- REGISTRY["RepresentedMsPacman_basic_translator"] = mspacman_translator.BasicStateSequenceTranslator
143
- REGISTRY["RepresentedMsPacman_basic_policies"] = [
144
- mspacman_policies.real_random_policy,
145
- mspacman_policies.pseudo_random_policy,
146
- mspacman_policies.dedicated_1_policy,
147
- mspacman_policies.dedicated_2_policy,
148
- mspacman_policies.dedicated_3_policy,
149
- mspacman_policies.dedicated_4_policy,
150
- mspacman_policies.dedicated_5_policy,
151
- mspacman_policies.dedicated_6_policy,
152
- mspacman_policies.dedicated_7_policy,
153
- mspacman_policies.dedicated_8_policy,
154
- mspacman_policies.dedicated_9_policy,
155
- ]
156
-
157
- REGISTRY["RepresentedMontezumaRevenge_init_translator"] = montezumarevenge_translator.GameDescriber
158
- REGISTRY["RepresentedMontezumaRevenge_basic_translator"] = montezumarevenge_translator.BasicStateSequenceTranslator
159
- REGISTRY["RepresentedMontezumaRevenge_basic_policies"] = [
160
- montezumarevenge_policies.real_random_policy,
161
- montezumarevenge_policies.pseudo_random_policy,
162
- montezumarevenge_policies.dedicated_1_policy,
163
- montezumarevenge_policies.dedicated_2_policy,
164
- montezumarevenge_policies.dedicated_3_policy,
165
- montezumarevenge_policies.dedicated_4_policy,
166
- montezumarevenge_policies.dedicated_5_policy,
167
- montezumarevenge_policies.dedicated_6_policy,
168
- montezumarevenge_policies.dedicated_7_policy,
169
- montezumarevenge_policies.dedicated_8_policy,
170
- montezumarevenge_policies.dedicated_9_policy,
171
- montezumarevenge_policies.dedicated_10_policy,
172
- montezumarevenge_policies.dedicated_11_policy,
173
- montezumarevenge_policies.dedicated_12_policy,
174
- montezumarevenge_policies.dedicated_13_policy,
175
- montezumarevenge_policies.dedicated_14_policy,
176
- montezumarevenge_policies.dedicated_15_policy,
177
- montezumarevenge_policies.dedicated_16_policy,
178
- montezumarevenge_policies.dedicated_17_policy,
179
- montezumarevenge_policies.dedicated_18_policy,
180
- ]
181
-
182
  ## For mujoco env
183
 
184
 
@@ -196,12 +156,12 @@ from .mujoco import walker2d_translator, walker2d_policies
196
 
197
 
198
 
199
- REGISTRY["invertedPendulum_init_translator"] = invertedPendulum_translator.GameDescriber
200
- REGISTRY["invertedPendulum_basic_translator"] = invertedPendulum_translator.BasicStateSequenceTranslator
201
- REGISTRY["invertedPendulum_policies"] = [invertedPendulum_policies.pseudo_random_policy, invertedPendulum_policies.real_random_policy]
202
- REGISTRY["invertedDoublePendulum_init_translator"] = invertedDoublePendulum_translator.GameDescriber
203
- REGISTRY["invertedDoublePendulum_basic_translator"] = invertedDoublePendulum_translator.BasicStateSequenceTranslator
204
- REGISTRY["invertedDoublePendulum_policies"] = [invertedDoublePendulum_policies.pseudo_random_policy, invertedDoublePendulum_policies.real_random_policy]
205
 
206
 
207
  REGISTRY["swimmer_init_translator"] = swimmer_translator.GameDescriber
 
18
  from .atari import montezumarevenge_policies, montezumarevenge_translator
19
  register_environments()
20
 
21
+ from .mujoco import ant_translator, ant_policies
22
 
23
  REGISTRY = {}
24
  REGISTRY["sampling_wrapper"] = SettableStateEnv
25
  REGISTRY["base_env"] = BaseEnv
26
+ REGISTRY["cartpole_init_translator"] = cartpole_translator.GameDescriber
27
+ REGISTRY["cartpole_basic_translator"] = cartpole_translator.BasicStateSequenceTranslator
28
  REGISTRY["acrobot_init_translator"] = acrobot_translator.GameDescriber
29
  REGISTRY["acrobot_basic_translator"] = acrobot_translator.BasicStateSequenceTranslator
30
  REGISTRY["mountaincar_init_translator"] = mountaincar_translator.GameDescriber
31
  REGISTRY["mountaincar_basic_translator"] = mountaincar_translator.BasicStateSequenceTranslator
32
 
33
+ REGISTRY["cartpole_policies"] = [cartpole_policies.dedicated_1_policy, cartpole_policies.dedicated_2_policy, cartpole_policies.pseudo_random_policy, cartpole_policies.real_random_policy]
34
  REGISTRY["acrobot_policies"] = [acrobot_policies.dedicated_1_policy, acrobot_policies.dedicated_2_policy, acrobot_policies.dedicated_3_policy, acrobot_policies.pseudo_random_policy, acrobot_policies.real_random_policy]
35
  REGISTRY["mountaincar_policies"] = [mountaincar_policies.dedicated_1_policy, mountaincar_policies.dedicated_2_policy, mountaincar_policies.dedicated_3_policy, mountaincar_policies.pseudo_random_policy, mountaincar_policies.real_random_policy]
36
 
37
+ REGISTRY["lunarlander_init_translator"] = LunarLander_translator.GameDescriber
38
+ REGISTRY["lunarlander_basic_translator"] = LunarLander_translator.BasicStateSequenceTranslator
39
+ REGISTRY["lunarlander_policies"] = [LunarLander_policies.dedicated_1_policy, LunarLander_policies.dedicated_2_policy, LunarLander_policies.dedicated_3_policy,LunarLander_policies.dedicated_4_policy, LunarLander_policies.pseudo_random_policy, LunarLander_policies.real_random_policy]
40
 
41
  REGISTRY["blackjack_init_translator"] = blackjack_translator.GameDescriber
42
  REGISTRY["blackjack_basic_translator"] = blackjack_translator.BasicStateSequenceTranslator
 
55
  REGISTRY["frozenlake_policies"] = [frozenlake_policies.dedicated_1_policy, frozenlake_policies.dedicated_2_policy, frozenlake_policies.dedicated_3_policy, frozenlake_policies.dedicated_4_policy, frozenlake_policies.pseudo_random_policy, frozenlake_policies.real_random_policy]
56
 
57
 
58
+ REGISTRY["mountaincarcontinuous_init_translator"] = mountaincarContinuous_translator.GameDescriber
59
+ REGISTRY["mountaincarcontinuous_basic_translator"] = mountaincarContinuous_translator.BasicStateSequenceTranslator
60
+ REGISTRY["mountaincarcontinuous_policies"] = [mountaincarContinuous_policies.pseudo_random_policy, mountaincarContinuous_policies.real_random_policy]
61
 
62
 
63
  REGISTRY["RepresentedBoxing_init_translator"] = Boxing_translator.GameDescriber
 
139
  montezumarevenge_policies.dedicated_18_policy,
140
  ]
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  ## For mujoco env
143
 
144
 
 
156
 
157
 
158
 
159
+ REGISTRY["invertedpendulum_init_translator"] = invertedPendulum_translator.GameDescriber
160
+ REGISTRY["invertedpendulum_basic_translator"] = invertedPendulum_translator.BasicStateSequenceTranslator
161
+ REGISTRY["invertedpendulum_policies"] = [invertedPendulum_policies.pseudo_random_policy, invertedPendulum_policies.real_random_policy]
162
+ REGISTRY["inverteddoublependulum_init_translator"] = invertedDoublePendulum_translator.GameDescriber
163
+ REGISTRY["inverteddoublependulum_basic_translator"] = invertedDoublePendulum_translator.BasicStateSequenceTranslator
164
+ REGISTRY["inverteddoublependulum_policies"] = [invertedDoublePendulum_policies.pseudo_random_policy, invertedDoublePendulum_policies.real_random_policy]
165
 
166
 
167
  REGISTRY["swimmer_init_translator"] = swimmer_translator.GameDescriber
envs/mujoco/invertedDoublePendulum_translator.py CHANGED
@@ -7,16 +7,9 @@ class BasicLevelTranslator:
7
  def translate(self, state):
8
  res = (
9
  f"Position of the cart: {state[0]:.2f} m\n"
10
- f"Sine of the angle between cart and first pole: {state[1]:.2f}\n"
11
- f"Sine of the angle between two poles: {state[2]:.2f}\n"
12
- f"Cosine of the angle between cart and first pole: {state[3]:.2f}\n"
13
- f"Cosine of the angle between two poles: {state[4]:.2f}\n"
14
- f"Velocity of the cart: {state[5]:.2f} m/s\n"
15
- f"Angular velocity of angle between cart and first pole: {state[6]:.2f} rad/s\n"
16
- f"Angular velocity of angle between two poles: {state[7]:.2f} rad/s\n"
17
- f"Constraint Force 1: {state[8]:.2f} N\n"
18
- f"Constraint Force 2: {state[9]:.2f} N\n"
19
- f"Constraint Force 3: {state[10]:.2f} N"
20
  )
21
  return res
22
 
@@ -25,7 +18,7 @@ class GameDescriber:
25
  self.is_only_local_obs = args.is_only_local_obs == 1
26
  self.max_episode_len = args.max_episode_len
27
  self.action_desc_dict = {
28
- 0: "Apply a force in the range [-3, 3] to the cart to control its motion.",
29
  }
30
  self.reward_desc_dict = {}
31
 
@@ -37,22 +30,24 @@ class GameDescriber:
37
 
38
  def describe_goal(self):
39
  return (
40
- "The goal in the InvertedDoublePendulum environment is to balance the two poles "\
41
- "on top of the cart by applying continuous forces on the cart."
42
  )
43
 
44
  def describe_game(self):
45
  return (
46
- "In the InvertedDoublePendulum environment, you control a system with a cart and two poles. "\
47
- "Your objective is to balance the two poles on top of the cart by applying continuous forces "\
48
- "to the cart. The environment provides observations of the cart's position, angles of the poles, "\
49
- "and their angular velocities. The episode ends when certain termination conditions are met."
 
50
  )
51
 
52
  def describe_action(self):
53
  return (
54
- "Your next move: \n Please provide a numerical value within the range of [-3,3], "\
55
- "representing the force to be applied to the cart."
 
56
  )
57
 
58
  class BasicStateSequenceTranslator(BasicLevelTranslator):
 
7
  def translate(self, state):
8
  res = (
9
  f"Position of the cart: {state[0]:.2f} m\n"
10
+ f"Vertical angle of the pole: {state[1]:.2f} rad\n"
11
+ f"Linear velocity of the cart: {state[2]:.2f} m/s\n"
12
+ f"Angular velocity of the pole: {state[3]:.2f} rad/s"
 
 
 
 
 
 
 
13
  )
14
  return res
15
 
 
18
  self.is_only_local_obs = args.is_only_local_obs == 1
19
  self.max_episode_len = args.max_episode_len
20
  self.action_desc_dict = {
21
+ 0: "Apply a force in the range [-1, 1] to the cart to control its motion.",
22
  }
23
  self.reward_desc_dict = {}
24
 
 
30
 
31
  def describe_goal(self):
32
  return (
33
+ "The goal in the Inverted Pendulum environment is to balance the pole on top of the cart "\
34
+ "by applying continuous forces to the cart, keeping it upright."
35
  )
36
 
37
  def describe_game(self):
38
  return (
39
+ "In the Inverted Pendulum environment, you control a cart that can move linearly with a pole "\
40
+ "attached to it. Your objective is to balance the pole on top of the cart by applying forces "\
41
+ "to the cart in a way that keeps the pole upright. "\
42
+ "The environment provides observations of the cart's position, pole angle, velocities, "\
43
+ "and angular velocities. The goal is to maintain balance as long as possible."
44
  )
45
 
46
  def describe_action(self):
47
  return (
48
+ "Your next move: \n Please provide a numerical value for the force to be applied to the cart. "\
49
+ "This value should be within the range of [-3, 3], where a positive value indicates applying force "\
50
+ "in the right direction, and a negative value indicates applying force in the left direction."
51
  )
52
 
53
  class BasicStateSequenceTranslator(BasicLevelTranslator):
envs/mujoco/invertedPendulum_translator.py CHANGED
@@ -7,9 +7,16 @@ class BasicLevelTranslator:
7
  def translate(self, state):
8
  res = (
9
  f"Position of the cart: {state[0]:.2f} m\n"
10
- f"Vertical angle of the pole: {state[1]:.2f} rad\n"
11
- f"Linear velocity of the cart: {state[2]:.2f} m/s\n"
12
- f"Angular velocity of the pole: {state[3]:.2f} rad/s"
 
 
 
 
 
 
 
13
  )
14
  return res
15
 
@@ -18,7 +25,7 @@ class GameDescriber:
18
  self.is_only_local_obs = args.is_only_local_obs == 1
19
  self.max_episode_len = args.max_episode_len
20
  self.action_desc_dict = {
21
- 0: "Apply a force in the range [-1, 1] to the cart to control its motion.",
22
  }
23
  self.reward_desc_dict = {}
24
 
@@ -30,24 +37,22 @@ class GameDescriber:
30
 
31
  def describe_goal(self):
32
  return (
33
- "The goal in the Inverted Pendulum environment is to balance the pole on top of the cart "\
34
- "by applying continuous forces to the cart, keeping it upright."
35
  )
36
 
37
  def describe_game(self):
38
  return (
39
- "In the Inverted Pendulum environment, you control a cart that can move linearly with a pole "\
40
- "attached to it. Your objective is to balance the pole on top of the cart by applying forces "\
41
- "to the cart in a way that keeps the pole upright. "\
42
- "The environment provides observations of the cart's position, pole angle, velocities, "\
43
- "and angular velocities. The goal is to maintain balance as long as possible."
44
  )
45
 
46
  def describe_action(self):
47
  return (
48
- "Your next move: \n Please provide a numerical value for the force to be applied to the cart. "\
49
- "This value should be within the range of [-3, 3], where a positive value indicates applying force "\
50
- "in the right direction, and a negative value indicates applying force in the left direction."
51
  )
52
 
53
  class BasicStateSequenceTranslator(BasicLevelTranslator):
 
7
  def translate(self, state):
8
  res = (
9
  f"Position of the cart: {state[0]:.2f} m\n"
10
+ f"Sine of the angle between cart and first pole: {state[1]:.2f}\n"
11
+ f"Sine of the angle between two poles: {state[2]:.2f}\n"
12
+ f"Cosine of the angle between cart and first pole: {state[3]:.2f}\n"
13
+ f"Cosine of the angle between two poles: {state[4]:.2f}\n"
14
+ f"Velocity of the cart: {state[5]:.2f} m/s\n"
15
+ f"Angular velocity of angle between cart and first pole: {state[6]:.2f} rad/s\n"
16
+ f"Angular velocity of angle between two poles: {state[7]:.2f} rad/s\n"
17
+ f"Constraint Force 1: {state[8]:.2f} N\n"
18
+ f"Constraint Force 2: {state[9]:.2f} N\n"
19
+ f"Constraint Force 3: {state[10]:.2f} N"
20
  )
21
  return res
22
 
 
25
  self.is_only_local_obs = args.is_only_local_obs == 1
26
  self.max_episode_len = args.max_episode_len
27
  self.action_desc_dict = {
28
+ 0: "Apply a force in the range [-3, 3] to the cart to control its motion.",
29
  }
30
  self.reward_desc_dict = {}
31
 
 
37
 
38
  def describe_goal(self):
39
  return (
40
+ "The goal in the InvertedDoublePendulum environment is to balance the two poles "\
41
+ "on top of the cart by applying continuous forces on the cart."
42
  )
43
 
44
  def describe_game(self):
45
  return (
46
+ "In the InvertedDoublePendulum environment, you control a system with a cart and two poles. "\
47
+ "Your objective is to balance the two poles on top of the cart by applying continuous forces "\
48
+ "to the cart. The environment provides observations of the cart's position, angles of the poles, "\
49
+ "and their angular velocities. The episode ends when certain termination conditions are met."
 
50
  )
51
 
52
  def describe_action(self):
53
  return (
54
+ "Your next move: \n Please provide a numerical value within the range of [-3,3], "\
55
+ "representing the force to be applied to the cart."
 
56
  )
57
 
58
  class BasicStateSequenceTranslator(BasicLevelTranslator):
record_reflexion.csv CHANGED
@@ -19,5 +19,4 @@ Walker2d-v4,1,expert,5000.0
19
  Swimmer-v4,1,expert,44.4
20
  Reacher-v4,1,expert,-2.6
21
  Pusher-v4,1,expert,-52.3
22
- InvertedPendulum-v4,1,expert,1000.0
23
- InvertedDoublePendulum-v4,1,expert,9359.5
 
19
  Swimmer-v4,1,expert,44.4
20
  Reacher-v4,1,expert,-2.6
21
  Pusher-v4,1,expert,-52.3
22
+
 
shell/test_reflexion.sh CHANGED
@@ -1,43 +1,43 @@
1
 
2
  # CartPole-v0
3
  # Naive Actor
4
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider naive_actor --prompt_level 1 --num_trails 1
5
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider naive_actor --prompt_level 3 -num_trails 2 --distiller traj_distiller
6
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider naive_actor --prompt_level 4 --num_trails 1 --distiller traj_distiller --prompt_path "envs/classic_control/few_shot_examples/cartpole"
7
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider naive_actor --prompt_level 5 --num_trails 1
8
 
9
  # COT
10
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider cot_actor --prompt_level 1 --num_trails 1
11
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider cot_actor --prompt_level 3 -num_trails 2 --distiller traj_distiller
12
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider cot_actor --prompt_level 4 --num_trails 1 --distiller traj_distiller --prompt_path "envs/classic_control/few_shot_examples/cartpole"
13
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider cot_actor --prompt_level 5 --num_trails 1
14
 
15
  # self consistency
16
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider self_consistency_actor --prompt_level 1 --num_trails 1
17
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider self_consistency_actor --prompt_level 3 -num_trails 2 --distiller traj_distiller
18
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider self_consistency_actor --prompt_level 4 --num_trails 1 --distiller traj_distiller --prompt_path "envs/classic_control/few_shot_examples/cartpole"
19
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider self_consistency_actor --prompt_level 5 --num_trails 1
20
 
21
  # self-ask
22
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider selfask_actor --prompt_level 1 --num_trails 1
23
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider selfask_actor --prompt_level 3 -num_trails 2 --distiller traj_distiller
24
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider selfask_actor --prompt_level 4 --num_trails 1 --distiller traj_distiller --prompt_path "envs/classic_control/few_shot_examples/cartpole"
25
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider selfask_actor --prompt_level 5 --num_trails 1
26
 
27
  # SPP
28
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider spp_actor --prompt_level 1 --num_trails 1
29
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider spp_actor --prompt_level 3 -num_trails 2 --distiller traj_distiller
30
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider spp_actor --prompt_level 4 --num_trails 1 --distiller traj_distiller --prompt_path "envs/classic_control/few_shot_examples/cartpole"
31
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider spp_actor --prompt_level 5 --num_trails 1
32
 
33
  # REFLEXION
34
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider reflexion_actor --prompt_level 1 --num_trails 1 --distiller reflect_distiller
35
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider reflexion_actor --prompt_level 3 -num_trails 2 --distiller reflect_distiller
36
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider reflexion_actor --prompt_level 4 --num_trails 1 --distiller reflect_distiller --prompt_path "envs/classic_control/few_shot_examples/cartpole"
37
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider reflexion_actor --prompt_level 5 --num_trails 1 --distiller reflect_distiller
38
 
39
  # exe
40
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider exe_actor --prompt_level 1 --num_trails 1 --distiller guide_generator
41
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider exe_actor --prompt_level 3 -num_trails 2 --distiller guide_generator
42
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider exe_actor --prompt_level 4 --num_trails 1 --distiller guide_generator --prompt_path "envs/classic_control/few_shot_examples/cartpole"
43
- python main_reflexion.py --env_name CartPole-v0 --init_summarizer cart_init_translator --curr_summarizer cart_basic_translator --decider exe_actor --prompt_level 5 --num_trails 1 --distiller guide_generator
 
1
 
2
  # CartPole-v0
3
  # Naive Actor
4
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider naive_actor --prompt_level 1 --num_trails 1
5
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider naive_actor --prompt_level 3 -num_trails 2 --distiller traj_distiller
6
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider naive_actor --prompt_level 4 --num_trails 1 --distiller traj_distiller --prompt_path "envs/classic_control/few_shot_examples/cartpole"
7
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider naive_actor --prompt_level 5 --num_trails 1
8
 
9
  # COT
10
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider cot_actor --prompt_level 1 --num_trails 1
11
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider cot_actor --prompt_level 3 -num_trails 2 --distiller traj_distiller
12
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider cot_actor --prompt_level 4 --num_trails 1 --distiller traj_distiller --prompt_path "envs/classic_control/few_shot_examples/cartpole"
13
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider cot_actor --prompt_level 5 --num_trails 1
14
 
15
  # self consistency
16
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider self_consistency_actor --prompt_level 1 --num_trails 1
17
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider self_consistency_actor --prompt_level 3 -num_trails 2 --distiller traj_distiller
18
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider self_consistency_actor --prompt_level 4 --num_trails 1 --distiller traj_distiller --prompt_path "envs/classic_control/few_shot_examples/cartpole"
19
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider self_consistency_actor --prompt_level 5 --num_trails 1
20
 
21
  # self-ask
22
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider selfask_actor --prompt_level 1 --num_trails 1
23
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider selfask_actor --prompt_level 3 -num_trails 2 --distiller traj_distiller
24
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider selfask_actor --prompt_level 4 --num_trails 1 --distiller traj_distiller --prompt_path "envs/classic_control/few_shot_examples/cartpole"
25
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider selfask_actor --prompt_level 5 --num_trails 1
26
 
27
  # SPP
28
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider spp_actor --prompt_level 1 --num_trails 1
29
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider spp_actor --prompt_level 3 -num_trails 2 --distiller traj_distiller
30
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider spp_actor --prompt_level 4 --num_trails 1 --distiller traj_distiller --prompt_path "envs/classic_control/few_shot_examples/cartpole"
31
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider spp_actor --prompt_level 5 --num_trails 1
32
 
33
  # REFLEXION
34
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider reflexion_actor --prompt_level 1 --num_trails 1 --distiller reflect_distiller
35
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider reflexion_actor --prompt_level 3 -num_trails 2 --distiller reflect_distiller
36
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider reflexion_actor --prompt_level 4 --num_trails 1 --distiller reflect_distiller --prompt_path "envs/classic_control/few_shot_examples/cartpole"
37
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider reflexion_actor --prompt_level 5 --num_trails 1 --distiller reflect_distiller
38
 
39
  # exe
40
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider exe_actor --prompt_level 1 --num_trails 1 --distiller guide_generator
41
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider exe_actor --prompt_level 3 -num_trails 2 --distiller guide_generator
42
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider exe_actor --prompt_level 4 --num_trails 1 --distiller guide_generator --prompt_path "envs/classic_control/few_shot_examples/cartpole"
43
+ python main_reflexion.py --env_name CartPole-v0 --init_summarizer cartpole_init_translator --curr_summarizer cartpole_basic_translator --decider exe_actor --prompt_level 5 --num_trails 1 --distiller guide_generator