|
import argparse |
|
import codecs |
|
import re |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import soundfile as sf |
|
import tomli |
|
from cached_path import cached_path |
|
|
|
from model import DiT, UNetT |
|
from model.utils_infer import ( |
|
load_vocoder, |
|
load_model, |
|
preprocess_ref_audio_text, |
|
infer_process, |
|
remove_silence_for_generated_wav, |
|
) |
|
|
|
|
|
parser = argparse.ArgumentParser( |
|
prog="python3 inference-cli.py", |
|
description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.", |
|
epilog="Specify options above to override one or more settings from config.", |
|
) |
|
parser.add_argument( |
|
"-c", |
|
"--config", |
|
help="Configuration file. Default=cli-config.toml", |
|
default="inference-cli.toml", |
|
) |
|
parser.add_argument( |
|
"-m", |
|
"--model", |
|
help="F5-TTS | E2-TTS", |
|
) |
|
parser.add_argument( |
|
"-p", |
|
"--ckpt_file", |
|
help="The Checkpoint .pt", |
|
) |
|
parser.add_argument( |
|
"-v", |
|
"--vocab_file", |
|
help="The vocab .txt", |
|
) |
|
parser.add_argument( |
|
"-r", |
|
"--ref_audio", |
|
type=str, |
|
help="Reference audio file < 15 seconds." |
|
) |
|
parser.add_argument( |
|
"-s", |
|
"--ref_text", |
|
type=str, |
|
default="666", |
|
help="Subtitle for the reference audio." |
|
) |
|
parser.add_argument( |
|
"-t", |
|
"--gen_text", |
|
type=str, |
|
help="Text to generate.", |
|
) |
|
parser.add_argument( |
|
"-f", |
|
"--gen_file", |
|
type=str, |
|
help="File with text to generate. Ignores --text", |
|
) |
|
parser.add_argument( |
|
"-o", |
|
"--output_dir", |
|
type=str, |
|
help="Path to output folder..", |
|
) |
|
parser.add_argument( |
|
"--remove_silence", |
|
help="Remove silence.", |
|
) |
|
parser.add_argument( |
|
"--load_vocoder_from_local", |
|
action="store_true", |
|
help="load vocoder from local. Default: ../checkpoints/charactr/vocos-mel-24khz", |
|
) |
|
args = parser.parse_args() |
|
|
|
config = tomli.load(open(args.config, "rb")) |
|
|
|
ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"] |
|
ref_text = args.ref_text if args.ref_text != "666" else config["ref_text"] |
|
gen_text = args.gen_text if args.gen_text else config["gen_text"] |
|
gen_file = args.gen_file if args.gen_file else config["gen_file"] |
|
if gen_file: |
|
gen_text = codecs.open(gen_file, "r", "utf-8").read() |
|
output_dir = args.output_dir if args.output_dir else config["output_dir"] |
|
model = args.model if args.model else config["model"] |
|
ckpt_file = args.ckpt_file if args.ckpt_file else "" |
|
vocab_file = args.vocab_file if args.vocab_file else "" |
|
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"] |
|
wave_path = Path(output_dir)/"out.wav" |
|
spectrogram_path = Path(output_dir)/"out.png" |
|
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz" |
|
|
|
vocos = load_vocoder(is_local=args.load_vocoder_from_local, local_path=vocos_local_path) |
|
|
|
|
|
|
|
if model == "F5-TTS": |
|
model_cls = DiT |
|
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) |
|
if ckpt_file == "": |
|
repo_name= "F5-TTS" |
|
exp_name = "F5TTS_Base" |
|
ckpt_step= 1200000 |
|
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors")) |
|
|
|
|
|
elif model == "E2-TTS": |
|
model_cls = UNetT |
|
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) |
|
if ckpt_file == "": |
|
repo_name= "E2-TTS" |
|
exp_name = "E2TTS_Base" |
|
ckpt_step= 1200000 |
|
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors")) |
|
|
|
|
|
print(f"Using {model}...") |
|
ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file) |
|
|
|
|
|
def main_process(ref_audio, ref_text, text_gen, model_obj, remove_silence): |
|
main_voice = {"ref_audio":ref_audio, "ref_text":ref_text} |
|
if "voices" not in config: |
|
voices = {"main": main_voice} |
|
else: |
|
voices = config["voices"] |
|
voices["main"] = main_voice |
|
for voice in voices: |
|
voices[voice]['ref_audio'], voices[voice]['ref_text'] = preprocess_ref_audio_text(voices[voice]['ref_audio'], voices[voice]['ref_text']) |
|
print("Voice:", voice) |
|
print("Ref_audio:", voices[voice]['ref_audio']) |
|
print("Ref_text:", voices[voice]['ref_text']) |
|
|
|
generated_audio_segments = [] |
|
reg1 = r'(?=\[\w+\])' |
|
chunks = re.split(reg1, text_gen) |
|
reg2 = r'\[(\w+)\]' |
|
for text in chunks: |
|
match = re.match(reg2, text) |
|
if match: |
|
voice = match[1] |
|
else: |
|
print("No voice tag found, using main.") |
|
voice = "main" |
|
if voice not in voices: |
|
print(f"Voice {voice} not found, using main.") |
|
voice = "main" |
|
text = re.sub(reg2, "", text) |
|
gen_text = text.strip() |
|
ref_audio = voices[voice]['ref_audio'] |
|
ref_text = voices[voice]['ref_text'] |
|
print(f"Voice: {voice}") |
|
audio, final_sample_rate, spectragram = infer_process(ref_audio, ref_text, gen_text, model_obj) |
|
generated_audio_segments.append(audio) |
|
|
|
if generated_audio_segments: |
|
final_wave = np.concatenate(generated_audio_segments) |
|
with open(wave_path, "wb") as f: |
|
sf.write(f.name, final_wave, final_sample_rate) |
|
|
|
if remove_silence: |
|
remove_silence_for_generated_wav(f.name) |
|
print(f.name) |
|
|
|
|
|
main_process(ref_audio, ref_text, gen_text, ema_model, remove_silence) |
|
|