Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import requests | |
| import pandas as pd | |
| import requests | |
| import openai | |
| from smolagents.tools import Tool | |
| import pathlib | |
| from typing import Union, Optional | |
| import pandas as pd | |
| from dotenv import load_dotenv | |
| # Load environment variables from .env file | |
| load_dotenv() | |
| # (Keep Constants as is) | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # --- Basic Agent Definition --- | |
| # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
| import os | |
| from smolagents import ( | |
| CodeAgent, | |
| DuckDuckGoSearchTool, | |
| VisitWebpageTool, | |
| PythonInterpreterTool, | |
| SpeechToTextTool, | |
| WikipediaSearchTool, | |
| Tool, | |
| LiteLLMModel | |
| ) | |
| class ExcelToTextTool(Tool): | |
| """Render an Excel worksheet as Markdown text.""" | |
| # ------------------------------------------------------------------ | |
| # Required smol‑agents metadata | |
| # ------------------------------------------------------------------ | |
| name = "excel_to_text" | |
| description = ( | |
| "Read an Excel file and return a Markdown table of the requested sheet. " | |
| "Accepts either the sheet name or the zero-based index." | |
| ) | |
| inputs = { | |
| "excel_path": { | |
| "type": "string", | |
| "description": "Path to the Excel file (.xlsx / .xls).", | |
| }, | |
| "sheet_name": { | |
| "type": "string", | |
| "description": ( | |
| "Worksheet name or zero‑based index *as a string* (optional; default first sheet)." | |
| ), | |
| "nullable": True, | |
| }, | |
| } | |
| output_type = "string" | |
| # ------------------------------------------------------------------ | |
| # Core logic | |
| # ------------------------------------------------------------------ | |
| def forward( | |
| self, | |
| excel_path: str, | |
| sheet_name: Optional[str] = None, | |
| ) -> str: | |
| """Load *excel_path* and return the sheet as a Markdown table.""" | |
| path = pathlib.Path(excel_path).expanduser().resolve() | |
| if not path.exists(): | |
| return f"Error: Excel file not found at {path}" | |
| try: | |
| # Interpret sheet identifier ----------------------------------- | |
| sheet: Union[str, int] | |
| if sheet_name is None or sheet_name == "": | |
| sheet = 0 # first sheet | |
| else: | |
| # If the user passed a numeric string (e.g. "1"), cast to int | |
| sheet = int(sheet_name) if sheet_name.isdigit() else sheet_name | |
| # Load worksheet ---------------------------------------------- | |
| df = pd.read_excel(path, sheet_name=sheet) | |
| # Render to Markdown; fall back to tabulate if needed --------- | |
| if hasattr(pd.DataFrame, "to_markdown"): | |
| return df.to_markdown(index=False) | |
| from tabulate import tabulate # pragma: no cover – fallback path | |
| return tabulate(df, headers="keys", tablefmt="github", showindex=False) | |
| except Exception as exc: # broad catch keeps the agent chat‑friendly | |
| return f"Error reading Excel file: {exc}" | |
| class BasicAgent(): | |
| def __init__(self): | |
| print("MyCustomAgent with SmolaAgent initialized.") | |
| self.model = LiteLLMModel( | |
| model_id="azure/gpt-4o-mini", | |
| api_key=os.getenv("api_key_4o"), | |
| api_base=os.getenv("base_url_4o"), | |
| api_version="2025-01-01-preview" | |
| ) | |
| # Outils disponibles | |
| tools = [ | |
| DuckDuckGoSearchTool(), # Recherche web (Wikipedia) | |
| VisitWebpageTool(), # Visite de pages web | |
| PythonInterpreterTool(), # Calculs, Excel, traitement de données | |
| SpeechToTextTool(), # Speech to text | |
| WikipediaSearchTool(), # Recherche sur Wikipedia | |
| ExcelToTextTool(), # Outil pour lire des fichiers Excel | |
| ] | |
| # Créer l'agent Alfred avec les outils | |
| self.alfred = CodeAgent( | |
| tools=tools, | |
| model=self.model, | |
| add_base_tools=True, | |
| additional_authorized_imports=['pandas','numpy','csv','subprocess'] | |
| ) | |
| print("Alfred agent ready with tools!") | |
| def extract_final_answer(self, response): | |
| """Extrait la réponse finale du response de l'agent""" | |
| if isinstance(response, str): | |
| # Si c'est déjà une string, la retourner directement | |
| return response.strip() | |
| # Si c'est un objet avec des attributs, essayer d'extraire le contenu | |
| if hasattr(response, 'content'): | |
| return str(response.content).strip() | |
| elif hasattr(response, 'text'): | |
| return str(response.text).strip() | |
| else: | |
| # Convertir en string par défaut | |
| return str(response).strip() | |
| def __call__(self, question: str) -> str: | |
| print(f"Alfred received question (first 50 chars): {question[:50]}...") | |
| try: | |
| prompt = f""" | |
| You are Alfred, an intelligent assistant with access to multiple tools. | |
| IMPORTANT: You MUST attempt to answer every question. Only say you cannot answer if you truly have no way to help. | |
| For the question: "{question}" | |
| 1. ANALYZE what type of information or calculation is needed | |
| 2. USE the most appropriate tool: | |
| - For math/calculations: use PythonInterpreterTool with code | |
| - For Excel/CSV files: use ExcelToTextTool or PythonInterpreterTool with pandas | |
| - For web search/facts: use DuckDuckGoSearchTool, then VisitWebpageTool if needed | |
| - For Wikipedia info: use WikipediaSearchTool | |
| - For data analysis: use PythonInterpreterTool | |
| 3. PROVIDE a direct, concise answer based on your findings | |
| Answer format rules: | |
| - Numbers: just the number (e.g., "42", "3.14") | |
| - Names: just the name (e.g., "Albert Einstein") | |
| - Lists: comma-separated (e.g., "a, b, c") | |
| - No extra text, quotes, or explanations | |
| Think step by step and use your tools to find the answer.""" | |
| # Utiliser Alfred pour traiter la question | |
| response = self.alfred.run(prompt) | |
| # IMPORTANT: Extraire seulement la réponse finale | |
| # Pas de "FINAL ANSWER" ou formatage supplémentaire | |
| final_answer = self.extract_final_answer(response) | |
| print(f"Alfred returning answer: {final_answer}") | |
| return final_answer | |
| except Exception as e: | |
| print(f"Erreur lors du traitement: {e}") | |
| return "Je ne peux pas répondre à cette question." | |
| def run_and_submit_all( profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the BasicAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
| if profile: | |
| username= f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent ( modify this part to create your agent) | |
| try: | |
| agent = BasicAgent() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(agent_code) | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| # 3. Run your Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| submitted_answer = agent(question_text) | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = "Submission Failed: The request timed out." | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Basic Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
| 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
| --- | |
| **Disclaimers:** | |
| Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
| This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| # Removed max_rows=10 from DataFrame constructor | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n" + "-"*30 + " App Starting " + "-"*30) | |
| # Check for SPACE_HOST and SPACE_ID at startup for information | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
| if space_host_startup: | |
| print(f"✅ SPACE_HOST found: {space_host_startup}") | |
| print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
| if space_id_startup: # Print repo URLs if SPACE_ID is found | |
| print(f"✅ SPACE_ID found: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
| else: | |
| print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
| print("-"*(60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Basic Agent Evaluation...") | |
| demo.launch(debug=True, share=False) |