LittleLirow's picture
Upload 121 files
a37d72d
raw
history blame
24.1 kB
import os
import torch
import numpy as np
from tqdm import tqdm
from audioldm.utils import default, instantiate_from_config, save_wave
from audioldm.latent_diffusion.ddpm import DDPM
from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution
from audioldm.latent_diffusion.util import noise_like
from audioldm.latent_diffusion.ddim import DDIMSampler
import os
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class LatentDiffusion(DDPM):
"""main class"""
def __init__(
self,
device="cuda",
first_stage_config=None,
cond_stage_config=None,
num_timesteps_cond=None,
cond_stage_key="image",
cond_stage_trainable=False,
concat_mode=True,
cond_stage_forward=None,
conditioning_key=None,
scale_factor=1.0,
scale_by_std=False,
base_learning_rate=None,
*args,
**kwargs,
):
self.device = device
self.learning_rate = base_learning_rate
self.num_timesteps_cond = default(num_timesteps_cond, 1)
self.scale_by_std = scale_by_std
assert self.num_timesteps_cond <= kwargs["timesteps"]
# for backwards compatibility after implementation of DiffusionWrapper
if conditioning_key is None:
conditioning_key = "concat" if concat_mode else "crossattn"
if cond_stage_config == "__is_unconditional__":
conditioning_key = None
ckpt_path = kwargs.pop("ckpt_path", None)
ignore_keys = kwargs.pop("ignore_keys", [])
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
self.cond_stage_key_orig = cond_stage_key
try:
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
except:
self.num_downs = 0
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer("scale_factor", torch.tensor(scale_factor))
self.instantiate_first_stage(first_stage_config)
self.instantiate_cond_stage(cond_stage_config)
self.cond_stage_forward = cond_stage_forward
self.clip_denoised = False
def make_cond_schedule(
self,
):
self.cond_ids = torch.full(
size=(self.num_timesteps,),
fill_value=self.num_timesteps - 1,
dtype=torch.long,
)
ids = torch.round(
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
).long()
self.cond_ids[: self.num_timesteps_cond] = ids
def register_schedule(
self,
given_betas=None,
beta_schedule="linear",
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
super().register_schedule(
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s
)
self.shorten_cond_schedule = self.num_timesteps_cond > 1
if self.shorten_cond_schedule:
self.make_cond_schedule()
def instantiate_first_stage(self, config):
model = instantiate_from_config(config)
self.first_stage_model = model.eval()
self.first_stage_model.train = disabled_train
for param in self.first_stage_model.parameters():
param.requires_grad = False
def instantiate_cond_stage(self, config):
if not self.cond_stage_trainable:
if config == "__is_first_stage__":
print("Using first stage also as cond stage.")
self.cond_stage_model = self.first_stage_model
elif config == "__is_unconditional__":
print(f"Training {self.__class__.__name__} as an unconditional model.")
self.cond_stage_model = None
# self.be_unconditional = True
else:
model = instantiate_from_config(config)
self.cond_stage_model = model.eval()
self.cond_stage_model.train = disabled_train
for param in self.cond_stage_model.parameters():
param.requires_grad = False
else:
assert config != "__is_first_stage__"
assert config != "__is_unconditional__"
model = instantiate_from_config(config)
self.cond_stage_model = model
self.cond_stage_model = self.cond_stage_model.to(self.device)
def get_first_stage_encoding(self, encoder_posterior):
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError(
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
)
return self.scale_factor * z
def get_learned_conditioning(self, c):
if self.cond_stage_forward is None:
if hasattr(self.cond_stage_model, "encode") and callable(
self.cond_stage_model.encode
):
c = self.cond_stage_model.encode(c)
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
if len(c) == 1:
c = self.cond_stage_model([c[0], c[0]])
c = c[0:1]
else:
c = self.cond_stage_model(c)
else:
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
return c
@torch.no_grad()
def get_input(
self,
batch,
k,
return_first_stage_encode=True,
return_first_stage_outputs=False,
force_c_encode=False,
cond_key=None,
return_original_cond=False,
bs=None,
):
x = super().get_input(batch, k)
if bs is not None:
x = x[:bs]
x = x.to(self.device)
if return_first_stage_encode:
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
else:
z = None
if self.model.conditioning_key is not None:
if cond_key is None:
cond_key = self.cond_stage_key
if cond_key != self.first_stage_key:
if cond_key in ["caption", "coordinates_bbox"]:
xc = batch[cond_key]
elif cond_key == "class_label":
xc = batch
else:
# [bs, 1, 527]
xc = super().get_input(batch, cond_key)
if type(xc) == torch.Tensor:
xc = xc.to(self.device)
else:
xc = x
if not self.cond_stage_trainable or force_c_encode:
if isinstance(xc, dict) or isinstance(xc, list):
c = self.get_learned_conditioning(xc)
else:
c = self.get_learned_conditioning(xc.to(self.device))
else:
c = xc
if bs is not None:
c = c[:bs]
else:
c = None
xc = None
if self.use_positional_encodings:
pos_x, pos_y = self.compute_latent_shifts(batch)
c = {"pos_x": pos_x, "pos_y": pos_y}
out = [z, c]
if return_first_stage_outputs:
xrec = self.decode_first_stage(z)
out.extend([x, xrec])
if return_original_cond:
out.append(xc)
return out
@torch.no_grad()
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
if predict_cids:
if z.dim() == 4:
z = torch.argmax(z.exp(), dim=1).long()
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
z = rearrange(z, "b h w c -> b c h w").contiguous()
z = 1.0 / self.scale_factor * z
return self.first_stage_model.decode(z)
def mel_spectrogram_to_waveform(self, mel):
# Mel: [bs, 1, t-steps, fbins]
if len(mel.size()) == 4:
mel = mel.squeeze(1)
mel = mel.permute(0, 2, 1)
waveform = self.first_stage_model.vocoder(mel)
waveform = waveform.cpu().detach().numpy()
return waveform
@torch.no_grad()
def encode_first_stage(self, x):
return self.first_stage_model.encode(x)
def apply_model(self, x_noisy, t, cond, return_ids=False):
if isinstance(cond, dict):
# hybrid case, cond is exptected to be a dict
pass
else:
if not isinstance(cond, list):
cond = [cond]
if self.model.conditioning_key == "concat":
key = "c_concat"
elif self.model.conditioning_key == "crossattn":
key = "c_crossattn"
else:
key = "c_film"
cond = {key: cond}
x_recon = self.model(x_noisy, t, **cond)
if isinstance(x_recon, tuple) and not return_ids:
return x_recon[0]
else:
return x_recon
def p_mean_variance(
self,
x,
c,
t,
clip_denoised: bool,
return_codebook_ids=False,
quantize_denoised=False,
return_x0=False,
score_corrector=None,
corrector_kwargs=None,
):
t_in = t
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
if score_corrector is not None:
assert self.parameterization == "eps"
model_out = score_corrector.modify_score(
self, model_out, x, t, c, **corrector_kwargs
)
if return_codebook_ids:
model_out, logits = model_out
if self.parameterization == "eps":
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == "x0":
x_recon = model_out
else:
raise NotImplementedError()
if clip_denoised:
x_recon.clamp_(-1.0, 1.0)
if quantize_denoised:
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
x_start=x_recon, x_t=x, t=t
)
if return_codebook_ids:
return model_mean, posterior_variance, posterior_log_variance, logits
elif return_x0:
return model_mean, posterior_variance, posterior_log_variance, x_recon
else:
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(
self,
x,
c,
t,
clip_denoised=False,
repeat_noise=False,
return_codebook_ids=False,
quantize_denoised=False,
return_x0=False,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
):
b, *_, device = *x.shape, x.device
outputs = self.p_mean_variance(
x=x,
c=c,
t=t,
clip_denoised=clip_denoised,
return_codebook_ids=return_codebook_ids,
quantize_denoised=quantize_denoised,
return_x0=return_x0,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
)
if return_codebook_ids:
raise DeprecationWarning("Support dropped.")
model_mean, _, model_log_variance, logits = outputs
elif return_x0:
model_mean, _, model_log_variance, x0 = outputs
else:
model_mean, _, model_log_variance = outputs
noise = noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.0:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
# no noise when t == 0
nonzero_mask = (
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous()
)
if return_codebook_ids:
return model_mean + nonzero_mask * (
0.5 * model_log_variance
).exp() * noise, logits.argmax(dim=1)
if return_x0:
return (
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise,
x0,
)
else:
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def progressive_denoising(
self,
cond,
shape,
verbose=True,
callback=None,
quantize_denoised=False,
img_callback=None,
mask=None,
x0=None,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
batch_size=None,
x_T=None,
start_T=None,
log_every_t=None,
):
if not log_every_t:
log_every_t = self.log_every_t
timesteps = self.num_timesteps
if batch_size is not None:
b = batch_size if batch_size is not None else shape[0]
shape = [batch_size] + list(shape)
else:
b = batch_size = shape[0]
if x_T is None:
img = torch.randn(shape, device=self.device)
else:
img = x_T
intermediates = []
if cond is not None:
if isinstance(cond, dict):
cond = {
key: cond[key][:batch_size]
if not isinstance(cond[key], list)
else list(map(lambda x: x[:batch_size], cond[key]))
for key in cond
}
else:
cond = (
[c[:batch_size] for c in cond]
if isinstance(cond, list)
else cond[:batch_size]
)
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = (
tqdm(
reversed(range(0, timesteps)),
desc="Progressive Generation",
total=timesteps,
)
if verbose
else reversed(range(0, timesteps))
)
if type(temperature) == float:
temperature = [temperature] * timesteps
for i in iterator:
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != "hybrid"
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img, x0_partial = self.p_sample(
img,
cond,
ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised,
return_x0=True,
temperature=temperature[i],
noise_dropout=noise_dropout,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
)
if mask is not None:
assert x0 is not None
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1.0 - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(x0_partial)
if callback:
callback(i)
if img_callback:
img_callback(img, i)
return img, intermediates
@torch.no_grad()
def p_sample_loop(
self,
cond,
shape,
return_intermediates=False,
x_T=None,
verbose=True,
callback=None,
timesteps=None,
quantize_denoised=False,
mask=None,
x0=None,
img_callback=None,
start_T=None,
log_every_t=None,
):
if not log_every_t:
log_every_t = self.log_every_t
device = self.betas.device
b = shape[0]
if x_T is None:
img = torch.randn(shape, device=device)
else:
img = x_T
intermediates = [img]
if timesteps is None:
timesteps = self.num_timesteps
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = (
tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps)
if verbose
else reversed(range(0, timesteps))
)
if mask is not None:
assert x0 is not None
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
for i in iterator:
ts = torch.full((b,), i, device=device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != "hybrid"
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
img = self.p_sample(
img,
cond,
ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised,
)
if mask is not None:
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1.0 - mask) * img
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(img)
if callback:
callback(i)
if img_callback:
img_callback(img, i)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(
self,
cond,
batch_size=16,
return_intermediates=False,
x_T=None,
verbose=True,
timesteps=None,
quantize_denoised=False,
mask=None,
x0=None,
shape=None,
**kwargs,
):
if shape is None:
shape = (batch_size, self.channels, self.latent_t_size, self.latent_f_size)
if cond is not None:
if isinstance(cond, dict):
cond = {
key: cond[key][:batch_size]
if not isinstance(cond[key], list)
else list(map(lambda x: x[:batch_size], cond[key]))
for key in cond
}
else:
cond = (
[c[:batch_size] for c in cond]
if isinstance(cond, list)
else cond[:batch_size]
)
return self.p_sample_loop(
cond,
shape,
return_intermediates=return_intermediates,
x_T=x_T,
verbose=verbose,
timesteps=timesteps,
quantize_denoised=quantize_denoised,
mask=mask,
x0=x0,
**kwargs,
)
@torch.no_grad()
def sample_log(
self,
cond,
batch_size,
ddim,
ddim_steps,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
use_plms=False,
mask=None,
**kwargs,
):
if mask is not None:
shape = (self.channels, mask.size()[-2], mask.size()[-1])
else:
shape = (self.channels, self.latent_t_size, self.latent_f_size)
intermediate = None
if ddim and not use_plms:
# print("Use ddim sampler")
ddim_sampler = DDIMSampler(self)
samples, intermediates = ddim_sampler.sample(
ddim_steps,
batch_size,
shape,
cond,
verbose=False,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
mask=mask,
**kwargs,
)
else:
# print("Use DDPM sampler")
samples, intermediates = self.sample(
cond=cond,
batch_size=batch_size,
return_intermediates=True,
unconditional_guidance_scale=unconditional_guidance_scale,
mask=mask,
unconditional_conditioning=unconditional_conditioning,
**kwargs,
)
return samples, intermediate
@torch.no_grad()
def generate_sample(
self,
batchs,
ddim_steps=200,
ddim_eta=1.0,
x_T=None,
n_candidate_gen_per_text=1,
unconditional_guidance_scale=1.0,
unconditional_conditioning=None,
name="waveform",
use_plms=False,
save=False,
**kwargs,
):
# Generate n_candidate_gen_per_text times and select the best
# Batch: audio, text, fnames
assert x_T is None
try:
batchs = iter(batchs)
except TypeError:
raise ValueError("The first input argument should be an iterable object")
if use_plms:
assert ddim_steps is not None
use_ddim = ddim_steps is not None
# waveform_save_path = os.path.join(self.get_log_dir(), name)
# os.makedirs(waveform_save_path, exist_ok=True)
# print("Waveform save path: ", waveform_save_path)
with self.ema_scope("Generate"):
for batch in batchs:
z, c = self.get_input(
batch,
self.first_stage_key,
return_first_stage_outputs=False,
force_c_encode=True,
return_original_cond=False,
bs=None,
)
text = super().get_input(batch, "text")
# Generate multiple samples
batch_size = z.shape[0] * n_candidate_gen_per_text
c = torch.cat([c] * n_candidate_gen_per_text, dim=0)
text = text * n_candidate_gen_per_text
if unconditional_guidance_scale != 1.0:
unconditional_conditioning = (
self.cond_stage_model.get_unconditional_condition(batch_size)
)
samples, _ = self.sample_log(
cond=c,
batch_size=batch_size,
x_T=x_T,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
use_plms=use_plms,
)
mel = self.decode_first_stage(samples)
waveform = self.mel_spectrogram_to_waveform(mel)
if(waveform.shape[0] > 1):
similarity = self.cond_stage_model.cos_similarity(
torch.FloatTensor(waveform).squeeze(1), text
)
best_index = []
for i in range(z.shape[0]):
candidates = similarity[i :: z.shape[0]]
max_index = torch.argmax(candidates).item()
best_index.append(i + max_index * z.shape[0])
waveform = waveform[best_index]
# print("Similarity between generated audio and text", similarity)
# print("Choose the following indexes:", best_index)
return waveform