LittleLirow commited on
Commit
a37d72d
1 Parent(s): a39856c

Upload 121 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. animation.py +0 -0
  2. app.py +10 -9
  3. audioldm/__init__.py +3 -0
  4. audioldm/__pycache__/__init__.cpython-310.pyc +0 -0
  5. audioldm/__pycache__/ldm.cpython-310.pyc +0 -0
  6. audioldm/__pycache__/pipeline.cpython-310.pyc +0 -0
  7. audioldm/__pycache__/utils.cpython-310.pyc +0 -0
  8. audioldm/audio/__init__.py +0 -0
  9. audioldm/audio/audio_processing.py +100 -0
  10. audioldm/audio/stft.py +180 -0
  11. audioldm/audio/tools.py +33 -0
  12. audioldm/clap/__init__.py +0 -0
  13. audioldm/clap/__pycache__/__init__.cpython-310.pyc +0 -0
  14. audioldm/clap/__pycache__/encoders.cpython-310.pyc +0 -0
  15. audioldm/clap/encoders.py +170 -0
  16. audioldm/clap/open_clip/__init__.py +25 -0
  17. audioldm/clap/open_clip/__pycache__/__init__.cpython-310.pyc +0 -0
  18. audioldm/clap/open_clip/__pycache__/factory.cpython-310.pyc +0 -0
  19. audioldm/clap/open_clip/__pycache__/feature_fusion.cpython-310.pyc +0 -0
  20. audioldm/clap/open_clip/__pycache__/htsat.cpython-310.pyc +0 -0
  21. audioldm/clap/open_clip/__pycache__/loss.cpython-310.pyc +0 -0
  22. audioldm/clap/open_clip/__pycache__/model.cpython-310.pyc +0 -0
  23. audioldm/clap/open_clip/__pycache__/openai.cpython-310.pyc +0 -0
  24. audioldm/clap/open_clip/__pycache__/pann_model.cpython-310.pyc +0 -0
  25. audioldm/clap/open_clip/__pycache__/pretrained.cpython-310.pyc +0 -0
  26. audioldm/clap/open_clip/__pycache__/timm_model.cpython-310.pyc +0 -0
  27. audioldm/clap/open_clip/__pycache__/tokenizer.cpython-310.pyc +0 -0
  28. audioldm/clap/open_clip/__pycache__/transform.cpython-310.pyc +0 -0
  29. audioldm/clap/open_clip/__pycache__/utils.cpython-310.pyc +0 -0
  30. audioldm/clap/open_clip/bert.py +40 -0
  31. audioldm/clap/open_clip/bpe_simple_vocab_16e6.txt.gz +3 -0
  32. audioldm/clap/open_clip/factory.py +277 -0
  33. audioldm/clap/open_clip/feature_fusion.py +192 -0
  34. audioldm/clap/open_clip/htsat.py +1308 -0
  35. audioldm/clap/open_clip/linear_probe.py +66 -0
  36. audioldm/clap/open_clip/loss.py +398 -0
  37. audioldm/clap/open_clip/model.py +936 -0
  38. audioldm/clap/open_clip/model_configs/HTSAT-base.json +23 -0
  39. audioldm/clap/open_clip/model_configs/HTSAT-large.json +23 -0
  40. audioldm/clap/open_clip/model_configs/HTSAT-tiny-win-1536.json +23 -0
  41. audioldm/clap/open_clip/model_configs/HTSAT-tiny.json +23 -0
  42. audioldm/clap/open_clip/model_configs/PANN-10.json +23 -0
  43. audioldm/clap/open_clip/model_configs/PANN-14-fmax-18k.json +23 -0
  44. audioldm/clap/open_clip/model_configs/PANN-14-fmax-8k-20s.json +23 -0
  45. audioldm/clap/open_clip/model_configs/PANN-14-tiny-transformer.json +23 -0
  46. audioldm/clap/open_clip/model_configs/PANN-14-win-1536.json +23 -0
  47. audioldm/clap/open_clip/model_configs/PANN-14.json +23 -0
  48. audioldm/clap/open_clip/model_configs/PANN-6.json +23 -0
  49. audioldm/clap/open_clip/model_configs/RN101-quickgelu.json +22 -0
  50. audioldm/clap/open_clip/model_configs/RN101.json +21 -0
animation.py ADDED
File without changes
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import gradio as gr
2
 
3
  def show_textbox(radio_state):
@@ -5,13 +6,13 @@ def show_textbox(radio_state):
5
  return [gr.Textbox.update(visible=False), gr.Textbox.update(visible=False), gr.Textbox.update(visible=True)]
6
  elif(radio_state == "ChatGPT"):
7
  return [gr.Textbox.update(visible=True), gr.Textbox.update(visible=True), gr.Textbox.update(visible=False)]
8
- elif(radio_state == "PlaceholderModel"):
9
- return [gr.Textbox.update(visible=True), gr.Textbox.update(visible=True), gr.Textbox.update(visible=False)]
10
  else:
11
- return [gr.Textbox.update(visible=False) for _ in range(3)]
12
 
13
- def generate_video():
14
- pass
 
 
15
 
16
  def download_video(v):
17
  pass
@@ -21,7 +22,7 @@ with gr.Blocks() as demo:
21
 
22
  with gr.Row():
23
  with gr.Column():
24
- radio_input = gr.Radio(["ChatGPT", "PlaceholderModel", "User Input"], type="value", label="Input method")
25
  auth_input = gr.Textbox(label="Auth Key", max_lines=1, visible=False, interactive=True)
26
  prompt_input = gr.Textbox(label="Prompt", lines=5, visible=False, interactive=True)
27
  text_input = gr.Textbox(label="Your Story", lines=5, visible=False, interactive=True)
@@ -32,10 +33,10 @@ with gr.Blocks() as demo:
32
  generate_button = gr.Button("Generate Video")
33
 
34
  with gr.Column():
35
- video_out = gr.PlayableVideo("https://cdn.discordapp.com/attachments/562513006530002957/995566813008109648/Neco-Arc_Bubbles_agree_with_you.mp4")
36
  download_button = gr.Button("Download")
37
 
38
- generate_button.click(generate_video)
39
  download_button.click(download_video, inputs=video_out)
40
 
41
- demo.launch()
 
1
+ import bgm
2
  import gradio as gr
3
 
4
  def show_textbox(radio_state):
 
6
  return [gr.Textbox.update(visible=False), gr.Textbox.update(visible=False), gr.Textbox.update(visible=True)]
7
  elif(radio_state == "ChatGPT"):
8
  return [gr.Textbox.update(visible=True), gr.Textbox.update(visible=True), gr.Textbox.update(visible=False)]
 
 
9
  else:
10
+ return [gr.Textbox.update(visible=False) for _ in range(2)]
11
 
12
+ def generate_video(text_in):
13
+ ambient_music = bgm.text2audio(text=text_in, duration=20, guidance_scale=5, random_seed=24, n_candidates=3)
14
+ print(ambient_music)
15
+ return ambient_music
16
 
17
  def download_video(v):
18
  pass
 
22
 
23
  with gr.Row():
24
  with gr.Column():
25
+ radio_input = gr.Radio(["ChatGPT", "User Input"], type="value", label="Input method")
26
  auth_input = gr.Textbox(label="Auth Key", max_lines=1, visible=False, interactive=True)
27
  prompt_input = gr.Textbox(label="Prompt", lines=5, visible=False, interactive=True)
28
  text_input = gr.Textbox(label="Your Story", lines=5, visible=False, interactive=True)
 
33
  generate_button = gr.Button("Generate Video")
34
 
35
  with gr.Column():
36
+ video_out = gr.Video(label="Output", interactive=False)
37
  download_button = gr.Button("Download")
38
 
39
+ generate_button.click(generate_video, inputs=[text_input], outputs=[video_out])
40
  download_button.click(download_video, inputs=video_out)
41
 
42
+ demo.launch(debug=True, enable_queue=True)
audioldm/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .ldm import LatentDiffusion
2
+ from .utils import seed_everything
3
+ from .pipeline import *
audioldm/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (269 Bytes). View file
 
audioldm/__pycache__/ldm.cpython-310.pyc ADDED
Binary file (14.5 kB). View file
 
audioldm/__pycache__/pipeline.cpython-310.pyc ADDED
Binary file (2.17 kB). View file
 
audioldm/__pycache__/utils.cpython-310.pyc ADDED
Binary file (4.81 kB). View file
 
audioldm/audio/__init__.py ADDED
File without changes
audioldm/audio/audio_processing.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import librosa.util as librosa_util
4
+ from scipy.signal import get_window
5
+
6
+
7
+ def window_sumsquare(
8
+ window,
9
+ n_frames,
10
+ hop_length,
11
+ win_length,
12
+ n_fft,
13
+ dtype=np.float32,
14
+ norm=None,
15
+ ):
16
+ """
17
+ # from librosa 0.6
18
+ Compute the sum-square envelope of a window function at a given hop length.
19
+
20
+ This is used to estimate modulation effects induced by windowing
21
+ observations in short-time fourier transforms.
22
+
23
+ Parameters
24
+ ----------
25
+ window : string, tuple, number, callable, or list-like
26
+ Window specification, as in `get_window`
27
+
28
+ n_frames : int > 0
29
+ The number of analysis frames
30
+
31
+ hop_length : int > 0
32
+ The number of samples to advance between frames
33
+
34
+ win_length : [optional]
35
+ The length of the window function. By default, this matches `n_fft`.
36
+
37
+ n_fft : int > 0
38
+ The length of each analysis frame.
39
+
40
+ dtype : np.dtype
41
+ The data type of the output
42
+
43
+ Returns
44
+ -------
45
+ wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
46
+ The sum-squared envelope of the window function
47
+ """
48
+ if win_length is None:
49
+ win_length = n_fft
50
+
51
+ n = n_fft + hop_length * (n_frames - 1)
52
+ x = np.zeros(n, dtype=dtype)
53
+
54
+ # Compute the squared window at the desired length
55
+ win_sq = get_window(window, win_length, fftbins=True)
56
+ win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2
57
+ win_sq = librosa_util.pad_center(win_sq, n_fft)
58
+
59
+ # Fill the envelope
60
+ for i in range(n_frames):
61
+ sample = i * hop_length
62
+ x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
63
+ return x
64
+
65
+
66
+ def griffin_lim(magnitudes, stft_fn, n_iters=30):
67
+ """
68
+ PARAMS
69
+ ------
70
+ magnitudes: spectrogram magnitudes
71
+ stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
72
+ """
73
+
74
+ angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
75
+ angles = angles.astype(np.float32)
76
+ angles = torch.autograd.Variable(torch.from_numpy(angles))
77
+ signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
78
+
79
+ for i in range(n_iters):
80
+ _, angles = stft_fn.transform(signal)
81
+ signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
82
+ return signal
83
+
84
+
85
+ def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5):
86
+ """
87
+ PARAMS
88
+ ------
89
+ C: compression factor
90
+ """
91
+ return normalize_fun(torch.clamp(x, min=clip_val) * C)
92
+
93
+
94
+ def dynamic_range_decompression(x, C=1):
95
+ """
96
+ PARAMS
97
+ ------
98
+ C: compression factor used to compress
99
+ """
100
+ return torch.exp(x) / C
audioldm/audio/stft.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import numpy as np
4
+ from scipy.signal import get_window
5
+ from librosa.util import pad_center, tiny
6
+ from librosa.filters import mel as librosa_mel_fn
7
+
8
+ from audioldm.audio.audio_processing import (
9
+ dynamic_range_compression,
10
+ dynamic_range_decompression,
11
+ window_sumsquare,
12
+ )
13
+
14
+
15
+ class STFT(torch.nn.Module):
16
+ """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
17
+
18
+ def __init__(self, filter_length, hop_length, win_length, window="hann"):
19
+ super(STFT, self).__init__()
20
+ self.filter_length = filter_length
21
+ self.hop_length = hop_length
22
+ self.win_length = win_length
23
+ self.window = window
24
+ self.forward_transform = None
25
+ scale = self.filter_length / self.hop_length
26
+ fourier_basis = np.fft.fft(np.eye(self.filter_length))
27
+
28
+ cutoff = int((self.filter_length / 2 + 1))
29
+ fourier_basis = np.vstack(
30
+ [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
31
+ )
32
+
33
+ forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
34
+ inverse_basis = torch.FloatTensor(
35
+ np.linalg.pinv(scale * fourier_basis).T[:, None, :]
36
+ )
37
+
38
+ if window is not None:
39
+ assert filter_length >= win_length
40
+ # get window and zero center pad it to filter_length
41
+ fft_window = get_window(window, win_length, fftbins=True)
42
+ fft_window = pad_center(fft_window, filter_length)
43
+ fft_window = torch.from_numpy(fft_window).float()
44
+
45
+ # window the bases
46
+ forward_basis *= fft_window
47
+ inverse_basis *= fft_window
48
+
49
+ self.register_buffer("forward_basis", forward_basis.float())
50
+ self.register_buffer("inverse_basis", inverse_basis.float())
51
+
52
+ def transform(self, input_data):
53
+ num_batches = input_data.size(0)
54
+ num_samples = input_data.size(1)
55
+
56
+ self.num_samples = num_samples
57
+
58
+ # similar to librosa, reflect-pad the input
59
+ input_data = input_data.view(num_batches, 1, num_samples)
60
+ input_data = F.pad(
61
+ input_data.unsqueeze(1),
62
+ (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
63
+ mode="reflect",
64
+ )
65
+ input_data = input_data.squeeze(1)
66
+
67
+ forward_transform = F.conv1d(
68
+ input_data,
69
+ torch.autograd.Variable(self.forward_basis, requires_grad=False),
70
+ stride=self.hop_length,
71
+ padding=0,
72
+ ).cpu()
73
+
74
+ cutoff = int((self.filter_length / 2) + 1)
75
+ real_part = forward_transform[:, :cutoff, :]
76
+ imag_part = forward_transform[:, cutoff:, :]
77
+
78
+ magnitude = torch.sqrt(real_part**2 + imag_part**2)
79
+ phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data))
80
+
81
+ return magnitude, phase
82
+
83
+ def inverse(self, magnitude, phase):
84
+ recombine_magnitude_phase = torch.cat(
85
+ [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
86
+ )
87
+
88
+ inverse_transform = F.conv_transpose1d(
89
+ recombine_magnitude_phase,
90
+ torch.autograd.Variable(self.inverse_basis, requires_grad=False),
91
+ stride=self.hop_length,
92
+ padding=0,
93
+ )
94
+
95
+ if self.window is not None:
96
+ window_sum = window_sumsquare(
97
+ self.window,
98
+ magnitude.size(-1),
99
+ hop_length=self.hop_length,
100
+ win_length=self.win_length,
101
+ n_fft=self.filter_length,
102
+ dtype=np.float32,
103
+ )
104
+ # remove modulation effects
105
+ approx_nonzero_indices = torch.from_numpy(
106
+ np.where(window_sum > tiny(window_sum))[0]
107
+ )
108
+ window_sum = torch.autograd.Variable(
109
+ torch.from_numpy(window_sum), requires_grad=False
110
+ )
111
+ window_sum = window_sum
112
+ inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
113
+ approx_nonzero_indices
114
+ ]
115
+
116
+ # scale by hop ratio
117
+ inverse_transform *= float(self.filter_length) / self.hop_length
118
+
119
+ inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :]
120
+ inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :]
121
+
122
+ return inverse_transform
123
+
124
+ def forward(self, input_data):
125
+ self.magnitude, self.phase = self.transform(input_data)
126
+ reconstruction = self.inverse(self.magnitude, self.phase)
127
+ return reconstruction
128
+
129
+
130
+ class TacotronSTFT(torch.nn.Module):
131
+ def __init__(
132
+ self,
133
+ filter_length,
134
+ hop_length,
135
+ win_length,
136
+ n_mel_channels,
137
+ sampling_rate,
138
+ mel_fmin,
139
+ mel_fmax,
140
+ ):
141
+ super(TacotronSTFT, self).__init__()
142
+ self.n_mel_channels = n_mel_channels
143
+ self.sampling_rate = sampling_rate
144
+ self.stft_fn = STFT(filter_length, hop_length, win_length)
145
+ mel_basis = librosa_mel_fn(
146
+ sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax
147
+ )
148
+ mel_basis = torch.from_numpy(mel_basis).float()
149
+ self.register_buffer("mel_basis", mel_basis)
150
+
151
+ def spectral_normalize(self, magnitudes, normalize_fun):
152
+ output = dynamic_range_compression(magnitudes, normalize_fun)
153
+ return output
154
+
155
+ def spectral_de_normalize(self, magnitudes):
156
+ output = dynamic_range_decompression(magnitudes)
157
+ return output
158
+
159
+ def mel_spectrogram(self, y, normalize_fun=torch.log):
160
+ """Computes mel-spectrograms from a batch of waves
161
+ PARAMS
162
+ ------
163
+ y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
164
+
165
+ RETURNS
166
+ -------
167
+ mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
168
+ """
169
+ assert torch.min(y.data) >= -1, torch.min(y.data)
170
+ assert torch.max(y.data) <= 1, torch.max(y.data)
171
+
172
+ magnitudes, phases = self.stft_fn.transform(y)
173
+ magnitudes = magnitudes.data
174
+ mel_output = torch.matmul(self.mel_basis, magnitudes)
175
+ mel_output = self.spectral_normalize(mel_output, normalize_fun)
176
+ energy = torch.norm(magnitudes, dim=1)
177
+
178
+ log_magnitudes = self.spectral_normalize(magnitudes, normalize_fun)
179
+
180
+ return mel_output, log_magnitudes, energy
audioldm/audio/tools.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ def get_mel_from_wav(audio, _stft):
6
+ audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
7
+ audio = torch.autograd.Variable(audio, requires_grad=False)
8
+ melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
9
+ melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
10
+ log_magnitudes_stft = (
11
+ torch.squeeze(log_magnitudes_stft, 0).numpy().astype(np.float32)
12
+ )
13
+ energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
14
+ return melspec, log_magnitudes_stft, energy
15
+
16
+
17
+ # def inv_mel_spec(mel, out_filename, _stft, griffin_iters=60):
18
+ # mel = torch.stack([mel])
19
+ # mel_decompress = _stft.spectral_de_normalize(mel)
20
+ # mel_decompress = mel_decompress.transpose(1, 2).data.cpu()
21
+ # spec_from_mel_scaling = 1000
22
+ # spec_from_mel = torch.mm(mel_decompress[0], _stft.mel_basis)
23
+ # spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0)
24
+ # spec_from_mel = spec_from_mel * spec_from_mel_scaling
25
+
26
+ # audio = griffin_lim(
27
+ # torch.autograd.Variable(spec_from_mel[:, :, :-1]), _stft._stft_fn, griffin_iters
28
+ # )
29
+
30
+ # audio = audio.squeeze()
31
+ # audio = audio.cpu().numpy()
32
+ # audio_path = out_filename
33
+ # write(audio_path, _stft.sampling_rate, audio)
audioldm/clap/__init__.py ADDED
File without changes
audioldm/clap/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (161 Bytes). View file
 
audioldm/clap/__pycache__/encoders.cpython-310.pyc ADDED
Binary file (5.14 kB). View file
 
audioldm/clap/encoders.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from audioldm.clap.open_clip import create_model
4
+ from audioldm.clap.training.data import get_audio_features
5
+ import torchaudio
6
+ from transformers import RobertaTokenizer
7
+ import torch.nn.functional as F
8
+
9
+
10
+ class CLAPAudioEmbeddingClassifierFreev2(nn.Module):
11
+ def __init__(
12
+ self,
13
+ pretrained_path="",
14
+ key="class",
15
+ sampling_rate=16000,
16
+ embed_mode="audio",
17
+ amodel = "HTSAT-tiny",
18
+ unconditional_prob=0.1,
19
+ random_mute=False,
20
+ max_random_mute_portion=0.5,
21
+ training_mode=True,
22
+ ):
23
+ super().__init__()
24
+
25
+ self.key = key
26
+ self.device = "cpu"
27
+ self.precision = "fp32"
28
+ self.amodel = amodel
29
+ self.tmodel = "roberta" # the best text encoder in our training
30
+ self.enable_fusion = False # False if you do not want to use the fusion model
31
+ self.fusion_type = "aff_2d"
32
+ self.pretrained = pretrained_path
33
+ self.embed_mode = embed_mode
34
+ self.embed_mode_orig = embed_mode
35
+ self.sampling_rate = sampling_rate
36
+ self.unconditional_prob = unconditional_prob
37
+ self.random_mute = random_mute
38
+ self.tokenize = RobertaTokenizer.from_pretrained("roberta-base")
39
+ self.max_random_mute_portion = max_random_mute_portion
40
+ self.training_mode = training_mode
41
+ self.model, self.model_cfg = create_model(
42
+ self.amodel,
43
+ self.tmodel,
44
+ self.pretrained,
45
+ precision=self.precision,
46
+ device=self.device,
47
+ enable_fusion=self.enable_fusion,
48
+ fusion_type=self.fusion_type,
49
+ )
50
+ for p in self.model.parameters():
51
+ p.requires_grad = False
52
+
53
+ self.model.eval()
54
+
55
+ def get_unconditional_condition(self, batchsize):
56
+ self.unconditional_token = self.model.get_text_embedding(
57
+ self.tokenizer(["", ""])
58
+ )[0:1]
59
+ return torch.cat([self.unconditional_token.unsqueeze(0)] * batchsize, dim=0)
60
+
61
+ def batch_to_list(self, batch):
62
+ ret = []
63
+ for i in range(batch.size(0)):
64
+ ret.append(batch[i])
65
+ return ret
66
+
67
+ def make_decision(self, probability):
68
+ if float(torch.rand(1)) < probability:
69
+ return True
70
+ else:
71
+ return False
72
+
73
+ def random_uniform(self, start, end):
74
+ val = torch.rand(1).item()
75
+ return start + (end - start) * val
76
+
77
+ def _random_mute(self, waveform):
78
+ # waveform: [bs, t-steps]
79
+ t_steps = waveform.size(-1)
80
+ for i in range(waveform.size(0)):
81
+ mute_size = int(
82
+ self.random_uniform(0, end=int(t_steps * self.max_random_mute_portion))
83
+ )
84
+ mute_start = int(self.random_uniform(0, t_steps - mute_size))
85
+ waveform[i, mute_start : mute_start + mute_size] = 0
86
+ return waveform
87
+
88
+ def cos_similarity(self, waveform, text):
89
+ # waveform: [bs, t_steps]
90
+ with torch.no_grad():
91
+ self.embed_mode = "audio"
92
+ audio_emb = self(waveform.cuda())
93
+ self.embed_mode = "text"
94
+ text_emb = self(text)
95
+ similarity = F.cosine_similarity(audio_emb, text_emb, dim=2)
96
+ return similarity.squeeze()
97
+
98
+ def forward(self, batch, key=None):
99
+ # If you want this conditioner to be unconditional, set self.unconditional_prob = 1.0
100
+ # If you want this conditioner to be fully conditional, set self.unconditional_prob = 0.0
101
+ if self.model.training == True and not self.training_mode:
102
+ print(
103
+ "The pretrained CLAP model should always be in eval mode. Reloading model just in case you change the parameters."
104
+ )
105
+ self.model, self.model_cfg = create_model(
106
+ self.amodel,
107
+ self.tmodel,
108
+ self.pretrained,
109
+ precision=self.precision,
110
+ device="cuda",
111
+ enable_fusion=self.enable_fusion,
112
+ fusion_type=self.fusion_type,
113
+ )
114
+ for p in self.model.parameters():
115
+ p.requires_grad = False
116
+ self.model.eval()
117
+
118
+ # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
119
+ if self.embed_mode == "audio":
120
+ with torch.no_grad():
121
+ audio_dict_list = []
122
+ assert (
123
+ self.sampling_rate == 16000
124
+ ), "We only support 16000 sampling rate"
125
+ if self.random_mute:
126
+ batch = self._random_mute(batch)
127
+ # batch: [bs, 1, t-samples]
128
+ batch = torchaudio.functional.resample(
129
+ batch, orig_freq=self.sampling_rate, new_freq=48000
130
+ )
131
+ for waveform in self.batch_to_list(batch):
132
+ audio_dict = {}
133
+ audio_dict = get_audio_features(
134
+ audio_dict,
135
+ waveform,
136
+ 480000,
137
+ data_truncating="fusion",
138
+ data_filling="repeatpad",
139
+ audio_cfg=self.model_cfg["audio_cfg"],
140
+ )
141
+ audio_dict_list.append(audio_dict)
142
+ # [bs, 512]
143
+ embed = self.model.get_audio_embedding(audio_dict_list)
144
+ elif self.embed_mode == "text":
145
+ with torch.no_grad():
146
+ # the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
147
+ text_data = self.tokenizer(batch)
148
+ embed = self.model.get_text_embedding(text_data)
149
+
150
+ embed = embed.unsqueeze(1)
151
+ self.unconditional_token = self.model.get_text_embedding(
152
+ self.tokenizer(["", ""])
153
+ )[0:1]
154
+
155
+ for i in range(embed.size(0)):
156
+ if self.make_decision(self.unconditional_prob):
157
+ embed[i] = self.unconditional_token
158
+
159
+ # [bs, 1, 512]
160
+ return embed.detach()
161
+
162
+ def tokenizer(self, text):
163
+ result = self.tokenize(
164
+ text,
165
+ padding="max_length",
166
+ truncation=True,
167
+ max_length=512,
168
+ return_tensors="pt",
169
+ )
170
+ return {k: v.squeeze(0) for k, v in result.items()}
audioldm/clap/open_clip/__init__.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .factory import (
2
+ list_models,
3
+ create_model,
4
+ create_model_and_transforms,
5
+ add_model_config,
6
+ )
7
+ from .loss import ClipLoss, gather_features, LPLoss, lp_gather_features, LPMetrics
8
+ from .model import (
9
+ CLAP,
10
+ CLAPTextCfg,
11
+ CLAPVisionCfg,
12
+ CLAPAudioCfp,
13
+ convert_weights_to_fp16,
14
+ trace_model,
15
+ )
16
+ from .openai import load_openai_model, list_openai_models
17
+ from .pretrained import (
18
+ list_pretrained,
19
+ list_pretrained_tag_models,
20
+ list_pretrained_model_tags,
21
+ get_pretrained_url,
22
+ download_pretrained,
23
+ )
24
+ from .tokenizer import SimpleTokenizer, tokenize
25
+ from .transform import image_transform
audioldm/clap/open_clip/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (967 Bytes). View file
 
audioldm/clap/open_clip/__pycache__/factory.cpython-310.pyc ADDED
Binary file (6.65 kB). View file
 
audioldm/clap/open_clip/__pycache__/feature_fusion.cpython-310.pyc ADDED
Binary file (4.12 kB). View file
 
audioldm/clap/open_clip/__pycache__/htsat.cpython-310.pyc ADDED
Binary file (30.8 kB). View file
 
audioldm/clap/open_clip/__pycache__/loss.cpython-310.pyc ADDED
Binary file (7.98 kB). View file
 
audioldm/clap/open_clip/__pycache__/model.cpython-310.pyc ADDED
Binary file (24.2 kB). View file
 
audioldm/clap/open_clip/__pycache__/openai.cpython-310.pyc ADDED
Binary file (4.53 kB). View file
 
audioldm/clap/open_clip/__pycache__/pann_model.cpython-310.pyc ADDED
Binary file (13.1 kB). View file
 
audioldm/clap/open_clip/__pycache__/pretrained.cpython-310.pyc ADDED
Binary file (5.04 kB). View file
 
audioldm/clap/open_clip/__pycache__/timm_model.cpython-310.pyc ADDED
Binary file (3.44 kB). View file
 
audioldm/clap/open_clip/__pycache__/tokenizer.cpython-310.pyc ADDED
Binary file (7.36 kB). View file
 
audioldm/clap/open_clip/__pycache__/transform.cpython-310.pyc ADDED
Binary file (985 Bytes). View file
 
audioldm/clap/open_clip/__pycache__/utils.cpython-310.pyc ADDED
Binary file (9.88 kB). View file
 
audioldm/clap/open_clip/bert.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import BertTokenizer, BertModel
2
+
3
+ tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
4
+ model = BertModel.from_pretrained("bert-base-uncased")
5
+ text = "Replace me by any text you'd like."
6
+
7
+
8
+ def bert_embeddings(text):
9
+ # text = "Replace me by any text you'd like."
10
+ encoded_input = tokenizer(text, return_tensors="pt")
11
+ output = model(**encoded_input)
12
+ return output
13
+
14
+
15
+ from transformers import RobertaTokenizer, RobertaModel
16
+
17
+ tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
18
+ model = RobertaModel.from_pretrained("roberta-base")
19
+ text = "Replace me by any text you'd like."
20
+
21
+
22
+ def Roberta_embeddings(text):
23
+ # text = "Replace me by any text you'd like."
24
+ encoded_input = tokenizer(text, return_tensors="pt")
25
+ output = model(**encoded_input)
26
+ return output
27
+
28
+
29
+ from transformers import BartTokenizer, BartModel
30
+
31
+ tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
32
+ model = BartModel.from_pretrained("facebook/bart-base")
33
+ text = "Replace me by any text you'd like."
34
+
35
+
36
+ def bart_embeddings(text):
37
+ # text = "Replace me by any text you'd like."
38
+ encoded_input = tokenizer(text, return_tensors="pt")
39
+ output = model(**encoded_input)
40
+ return output
audioldm/clap/open_clip/bpe_simple_vocab_16e6.txt.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
3
+ size 1356917
audioldm/clap/open_clip/factory.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ import os
4
+ import pathlib
5
+ import re
6
+ from copy import deepcopy
7
+ from pathlib import Path
8
+
9
+ import torch
10
+
11
+ from .model import CLAP, convert_weights_to_fp16
12
+ from .openai import load_openai_model
13
+ from .pretrained import get_pretrained_url, download_pretrained
14
+ from .transform import image_transform
15
+
16
+ _MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
17
+ _MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
18
+
19
+
20
+ def _natural_key(string_):
21
+ return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())]
22
+
23
+
24
+ def _rescan_model_configs():
25
+ global _MODEL_CONFIGS
26
+
27
+ config_ext = (".json",)
28
+ config_files = []
29
+ for config_path in _MODEL_CONFIG_PATHS:
30
+ if config_path.is_file() and config_path.suffix in config_ext:
31
+ config_files.append(config_path)
32
+ elif config_path.is_dir():
33
+ for ext in config_ext:
34
+ config_files.extend(config_path.glob(f"*{ext}"))
35
+
36
+ for cf in config_files:
37
+ if os.path.basename(cf)[0] == ".":
38
+ continue # Ignore hidden files
39
+
40
+ with open(cf, "r") as f:
41
+ model_cfg = json.load(f)
42
+ if all(a in model_cfg for a in ("embed_dim", "audio_cfg", "text_cfg")):
43
+ _MODEL_CONFIGS[cf.stem] = model_cfg
44
+
45
+ _MODEL_CONFIGS = {
46
+ k: v
47
+ for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))
48
+ }
49
+
50
+
51
+ _rescan_model_configs() # initial populate of model config registry
52
+
53
+
54
+ def load_state_dict(checkpoint_path: str, map_location="cpu", skip_params=True):
55
+ checkpoint = torch.load(checkpoint_path, map_location=map_location)
56
+ if isinstance(checkpoint, dict) and "state_dict" in checkpoint:
57
+ state_dict = checkpoint["state_dict"]
58
+ else:
59
+ state_dict = checkpoint
60
+ if skip_params:
61
+ if next(iter(state_dict.items()))[0].startswith("module"):
62
+ state_dict = {k[7:]: v for k, v in state_dict.items()}
63
+ # for k in state_dict:
64
+ # if k.startswith('transformer'):
65
+ # v = state_dict.pop(k)
66
+ # state_dict['text_branch.' + k[12:]] = v
67
+ return state_dict
68
+
69
+
70
+ def create_model(
71
+ amodel_name: str,
72
+ tmodel_name: str,
73
+ pretrained: str = "",
74
+ precision: str = "fp32",
75
+ device: torch.device = torch.device("cpu"),
76
+ jit: bool = False,
77
+ force_quick_gelu: bool = False,
78
+ openai_model_cache_dir: str = os.path.expanduser("~/.cache/clip"),
79
+ skip_params=True,
80
+ pretrained_audio: str = "",
81
+ pretrained_text: str = "",
82
+ enable_fusion: bool = False,
83
+ fusion_type: str = "None"
84
+ # pretrained_image: bool = False,
85
+ ):
86
+ amodel_name = amodel_name.replace(
87
+ "/", "-"
88
+ ) # for callers using old naming with / in ViT names
89
+ pretrained_orig = pretrained
90
+ pretrained = pretrained.lower()
91
+ if pretrained == "openai":
92
+ if amodel_name in _MODEL_CONFIGS:
93
+ logging.info(f"Loading {amodel_name} model config.")
94
+ model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name])
95
+ else:
96
+ logging.error(
97
+ f"Model config for {amodel_name} not found; available models {list_models()}."
98
+ )
99
+ raise RuntimeError(f"Model config for {amodel_name} not found.")
100
+
101
+ logging.info(f"Loading pretrained ViT-B-16 text encoder from OpenAI.")
102
+ # Hard Code in model name
103
+ model_cfg["text_cfg"]["model_type"] = tmodel_name
104
+ model = load_openai_model(
105
+ "ViT-B-16",
106
+ model_cfg,
107
+ device=device,
108
+ jit=jit,
109
+ cache_dir=openai_model_cache_dir,
110
+ enable_fusion=enable_fusion,
111
+ fusion_type=fusion_type,
112
+ )
113
+ # See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372
114
+ if precision == "amp" or precision == "fp32":
115
+ model = model.float()
116
+ else:
117
+ if amodel_name in _MODEL_CONFIGS:
118
+ logging.info(f"Loading {amodel_name} model config.")
119
+ model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name])
120
+ else:
121
+ logging.error(
122
+ f"Model config for {amodel_name} not found; available models {list_models()}."
123
+ )
124
+ raise RuntimeError(f"Model config for {amodel_name} not found.")
125
+
126
+ if force_quick_gelu:
127
+ # override for use of QuickGELU on non-OpenAI transformer models
128
+ model_cfg["quick_gelu"] = True
129
+
130
+ # if pretrained_image:
131
+ # if 'timm_amodel_name' in model_cfg.get('vision_cfg', {}):
132
+ # # pretrained weight loading for timm models set via vision_cfg
133
+ # model_cfg['vision_cfg']['timm_model_pretrained'] = True
134
+ # else:
135
+ # assert False, 'pretrained image towers currently only supported for timm models'
136
+ model_cfg["text_cfg"]["model_type"] = tmodel_name
137
+ model_cfg["enable_fusion"] = enable_fusion
138
+ model_cfg["fusion_type"] = fusion_type
139
+ model = CLAP(**model_cfg)
140
+
141
+ if pretrained:
142
+ checkpoint_path = ""
143
+ url = get_pretrained_url(amodel_name, pretrained)
144
+ if url:
145
+ checkpoint_path = download_pretrained(url, root=openai_model_cache_dir)
146
+ elif os.path.exists(pretrained_orig):
147
+ checkpoint_path = pretrained_orig
148
+ if checkpoint_path:
149
+ logging.info(
150
+ f"Loading pretrained {amodel_name}-{tmodel_name} weights ({pretrained})."
151
+ )
152
+ ckpt = load_state_dict(checkpoint_path, skip_params=True)
153
+ model.load_state_dict(ckpt)
154
+ param_names = [n for n, p in model.named_parameters()]
155
+ # for n in param_names:
156
+ # print(n, "\t", "Loaded" if n in ckpt else "Unloaded")
157
+ else:
158
+ logging.warning(
159
+ f"Pretrained weights ({pretrained}) not found for model {amodel_name}."
160
+ )
161
+ raise RuntimeError(
162
+ f"Pretrained weights ({pretrained}) not found for model {amodel_name}."
163
+ )
164
+
165
+ if pretrained_audio:
166
+ if amodel_name.startswith("PANN"):
167
+ if "Cnn14_mAP" in pretrained_audio: # official checkpoint
168
+ audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
169
+ audio_ckpt = audio_ckpt["model"]
170
+ keys = list(audio_ckpt.keys())
171
+ for key in keys:
172
+ if (
173
+ "spectrogram_extractor" not in key
174
+ and "logmel_extractor" not in key
175
+ ):
176
+ v = audio_ckpt.pop(key)
177
+ audio_ckpt["audio_branch." + key] = v
178
+ elif os.path.basename(pretrained_audio).startswith(
179
+ "PANN"
180
+ ): # checkpoint trained via HTSAT codebase
181
+ audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
182
+ audio_ckpt = audio_ckpt["state_dict"]
183
+ keys = list(audio_ckpt.keys())
184
+ for key in keys:
185
+ if key.startswith("sed_model"):
186
+ v = audio_ckpt.pop(key)
187
+ audio_ckpt["audio_branch." + key[10:]] = v
188
+ elif os.path.basename(pretrained_audio).startswith(
189
+ "finetuned"
190
+ ): # checkpoint trained via linear probe codebase
191
+ audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
192
+ else:
193
+ raise ValueError("Unknown audio checkpoint")
194
+ elif amodel_name.startswith("HTSAT"):
195
+ if "HTSAT_AudioSet_Saved" in pretrained_audio: # official checkpoint
196
+ audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
197
+ audio_ckpt = audio_ckpt["state_dict"]
198
+ keys = list(audio_ckpt.keys())
199
+ for key in keys:
200
+ if key.startswith("sed_model") and (
201
+ "spectrogram_extractor" not in key
202
+ and "logmel_extractor" not in key
203
+ ):
204
+ v = audio_ckpt.pop(key)
205
+ audio_ckpt["audio_branch." + key[10:]] = v
206
+ elif os.path.basename(pretrained_audio).startswith(
207
+ "HTSAT"
208
+ ): # checkpoint trained via HTSAT codebase
209
+ audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
210
+ audio_ckpt = audio_ckpt["state_dict"]
211
+ keys = list(audio_ckpt.keys())
212
+ for key in keys:
213
+ if key.startswith("sed_model"):
214
+ v = audio_ckpt.pop(key)
215
+ audio_ckpt["audio_branch." + key[10:]] = v
216
+ elif os.path.basename(pretrained_audio).startswith(
217
+ "finetuned"
218
+ ): # checkpoint trained via linear probe codebase
219
+ audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
220
+ else:
221
+ raise ValueError("Unknown audio checkpoint")
222
+ else:
223
+ raise f"this audio encoder pretrained checkpoint is not support"
224
+
225
+ model.load_state_dict(audio_ckpt, strict=False)
226
+ logging.info(
227
+ f"Loading pretrained {amodel_name} weights ({pretrained_audio})."
228
+ )
229
+ param_names = [n for n, p in model.named_parameters()]
230
+ for n in param_names:
231
+ print(n, "\t", "Loaded" if n in audio_ckpt else "Unloaded")
232
+
233
+ model.to(device=device)
234
+ if precision == "fp16":
235
+ assert device.type != "cpu"
236
+ convert_weights_to_fp16(model)
237
+
238
+ if jit:
239
+ model = torch.jit.script(model)
240
+
241
+ return model, model_cfg
242
+
243
+
244
+ def create_model_and_transforms(
245
+ model_name: str,
246
+ pretrained: str = "",
247
+ precision: str = "fp32",
248
+ device: torch.device = torch.device("cpu"),
249
+ jit: bool = False,
250
+ force_quick_gelu: bool = False,
251
+ # pretrained_image: bool = False,
252
+ ):
253
+ model = create_model(
254
+ model_name,
255
+ pretrained,
256
+ precision,
257
+ device,
258
+ jit,
259
+ force_quick_gelu=force_quick_gelu,
260
+ # pretrained_image=pretrained_image
261
+ )
262
+ preprocess_train = image_transform(model.visual.image_size, is_train=True)
263
+ preprocess_val = image_transform(model.visual.image_size, is_train=False)
264
+ return model, preprocess_train, preprocess_val
265
+
266
+
267
+ def list_models():
268
+ """enumerate available model architectures based on config files"""
269
+ return list(_MODEL_CONFIGS.keys())
270
+
271
+
272
+ def add_model_config(path):
273
+ """add model config path or file and update registry"""
274
+ if not isinstance(path, Path):
275
+ path = Path(path)
276
+ _MODEL_CONFIG_PATHS.append(path)
277
+ _rescan_model_configs()
audioldm/clap/open_clip/feature_fusion.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Feature Fusion for Varible-Length Data Processing
3
+ AFF/iAFF is referred and modified from https://github.com/YimianDai/open-aff/blob/master/aff_pytorch/aff_net/fusion.py
4
+ According to the paper: Yimian Dai et al, Attentional Feature Fusion, IEEE Winter Conference on Applications of Computer Vision, WACV 2021
5
+ """
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+
10
+
11
+ class DAF(nn.Module):
12
+ """
13
+ 直接相加 DirectAddFuse
14
+ """
15
+
16
+ def __init__(self):
17
+ super(DAF, self).__init__()
18
+
19
+ def forward(self, x, residual):
20
+ return x + residual
21
+
22
+
23
+ class iAFF(nn.Module):
24
+ """
25
+ 多特征融合 iAFF
26
+ """
27
+
28
+ def __init__(self, channels=64, r=4, type="2D"):
29
+ super(iAFF, self).__init__()
30
+ inter_channels = int(channels // r)
31
+
32
+ if type == "1D":
33
+ # 本地注意力
34
+ self.local_att = nn.Sequential(
35
+ nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
36
+ nn.BatchNorm1d(inter_channels),
37
+ nn.ReLU(inplace=True),
38
+ nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
39
+ nn.BatchNorm1d(channels),
40
+ )
41
+
42
+ # 全局注意力
43
+ self.global_att = nn.Sequential(
44
+ nn.AdaptiveAvgPool1d(1),
45
+ nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
46
+ nn.BatchNorm1d(inter_channels),
47
+ nn.ReLU(inplace=True),
48
+ nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
49
+ nn.BatchNorm1d(channels),
50
+ )
51
+
52
+ # 第二次本地注意力
53
+ self.local_att2 = nn.Sequential(
54
+ nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
55
+ nn.BatchNorm1d(inter_channels),
56
+ nn.ReLU(inplace=True),
57
+ nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
58
+ nn.BatchNorm1d(channels),
59
+ )
60
+ # 第二次全局注意力
61
+ self.global_att2 = nn.Sequential(
62
+ nn.AdaptiveAvgPool1d(1),
63
+ nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
64
+ nn.BatchNorm1d(inter_channels),
65
+ nn.ReLU(inplace=True),
66
+ nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
67
+ nn.BatchNorm1d(channels),
68
+ )
69
+ elif type == "2D":
70
+ # 本地注意力
71
+ self.local_att = nn.Sequential(
72
+ nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
73
+ nn.BatchNorm2d(inter_channels),
74
+ nn.ReLU(inplace=True),
75
+ nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
76
+ nn.BatchNorm2d(channels),
77
+ )
78
+
79
+ # 全局注意力
80
+ self.global_att = nn.Sequential(
81
+ nn.AdaptiveAvgPool2d(1),
82
+ nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
83
+ nn.BatchNorm2d(inter_channels),
84
+ nn.ReLU(inplace=True),
85
+ nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
86
+ nn.BatchNorm2d(channels),
87
+ )
88
+
89
+ # 第二次本地注意力
90
+ self.local_att2 = nn.Sequential(
91
+ nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
92
+ nn.BatchNorm2d(inter_channels),
93
+ nn.ReLU(inplace=True),
94
+ nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
95
+ nn.BatchNorm2d(channels),
96
+ )
97
+ # 第二次全局注意力
98
+ self.global_att2 = nn.Sequential(
99
+ nn.AdaptiveAvgPool2d(1),
100
+ nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
101
+ nn.BatchNorm2d(inter_channels),
102
+ nn.ReLU(inplace=True),
103
+ nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
104
+ nn.BatchNorm2d(channels),
105
+ )
106
+ else:
107
+ raise f"the type is not supported"
108
+
109
+ self.sigmoid = nn.Sigmoid()
110
+
111
+ def forward(self, x, residual):
112
+ flag = False
113
+ xa = x + residual
114
+ if xa.size(0) == 1:
115
+ xa = torch.cat([xa, xa], dim=0)
116
+ flag = True
117
+ xl = self.local_att(xa)
118
+ xg = self.global_att(xa)
119
+ xlg = xl + xg
120
+ wei = self.sigmoid(xlg)
121
+ xi = x * wei + residual * (1 - wei)
122
+
123
+ xl2 = self.local_att2(xi)
124
+ xg2 = self.global_att(xi)
125
+ xlg2 = xl2 + xg2
126
+ wei2 = self.sigmoid(xlg2)
127
+ xo = x * wei2 + residual * (1 - wei2)
128
+ if flag:
129
+ xo = xo[0].unsqueeze(0)
130
+ return xo
131
+
132
+
133
+ class AFF(nn.Module):
134
+ """
135
+ 多特征融合 AFF
136
+ """
137
+
138
+ def __init__(self, channels=64, r=4, type="2D"):
139
+ super(AFF, self).__init__()
140
+ inter_channels = int(channels // r)
141
+
142
+ if type == "1D":
143
+ self.local_att = nn.Sequential(
144
+ nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
145
+ nn.BatchNorm1d(inter_channels),
146
+ nn.ReLU(inplace=True),
147
+ nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
148
+ nn.BatchNorm1d(channels),
149
+ )
150
+ self.global_att = nn.Sequential(
151
+ nn.AdaptiveAvgPool1d(1),
152
+ nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
153
+ nn.BatchNorm1d(inter_channels),
154
+ nn.ReLU(inplace=True),
155
+ nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
156
+ nn.BatchNorm1d(channels),
157
+ )
158
+ elif type == "2D":
159
+ self.local_att = nn.Sequential(
160
+ nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
161
+ nn.BatchNorm2d(inter_channels),
162
+ nn.ReLU(inplace=True),
163
+ nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
164
+ nn.BatchNorm2d(channels),
165
+ )
166
+ self.global_att = nn.Sequential(
167
+ nn.AdaptiveAvgPool2d(1),
168
+ nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
169
+ nn.BatchNorm2d(inter_channels),
170
+ nn.ReLU(inplace=True),
171
+ nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
172
+ nn.BatchNorm2d(channels),
173
+ )
174
+ else:
175
+ raise f"the type is not supported."
176
+
177
+ self.sigmoid = nn.Sigmoid()
178
+
179
+ def forward(self, x, residual):
180
+ flag = False
181
+ xa = x + residual
182
+ if xa.size(0) == 1:
183
+ xa = torch.cat([xa, xa], dim=0)
184
+ flag = True
185
+ xl = self.local_att(xa)
186
+ xg = self.global_att(xa)
187
+ xlg = xl + xg
188
+ wei = self.sigmoid(xlg)
189
+ xo = 2 * x * wei + 2 * residual * (1 - wei)
190
+ if flag:
191
+ xo = xo[0].unsqueeze(0)
192
+ return xo
audioldm/clap/open_clip/htsat.py ADDED
@@ -0,0 +1,1308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ke Chen
2
+ # knutchen@ucsd.edu
3
+ # HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
4
+ # Some layers designed on the model
5
+ # below codes are based and referred from https://github.com/microsoft/Swin-Transformer
6
+ # Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ from itertools import repeat
12
+ import collections.abc
13
+ import math
14
+ import warnings
15
+
16
+ from torch.nn.init import _calculate_fan_in_and_fan_out
17
+ import torch.utils.checkpoint as checkpoint
18
+
19
+ import random
20
+
21
+ from torchlibrosa.stft import Spectrogram, LogmelFilterBank
22
+ from torchlibrosa.augmentation import SpecAugmentation
23
+
24
+ from itertools import repeat
25
+ from .utils import do_mixup, interpolate
26
+
27
+ from .feature_fusion import iAFF, AFF, DAF
28
+
29
+ # from PyTorch internals
30
+ def _ntuple(n):
31
+ def parse(x):
32
+ if isinstance(x, collections.abc.Iterable):
33
+ return x
34
+ return tuple(repeat(x, n))
35
+
36
+ return parse
37
+
38
+
39
+ to_1tuple = _ntuple(1)
40
+ to_2tuple = _ntuple(2)
41
+ to_3tuple = _ntuple(3)
42
+ to_4tuple = _ntuple(4)
43
+ to_ntuple = _ntuple
44
+
45
+
46
+ def drop_path(x, drop_prob: float = 0.0, training: bool = False):
47
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
48
+ This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
49
+ the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
50
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
51
+ changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
52
+ 'survival rate' as the argument.
53
+ """
54
+ if drop_prob == 0.0 or not training:
55
+ return x
56
+ keep_prob = 1 - drop_prob
57
+ shape = (x.shape[0],) + (1,) * (
58
+ x.ndim - 1
59
+ ) # work with diff dim tensors, not just 2D ConvNets
60
+ random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
61
+ random_tensor.floor_() # binarize
62
+ output = x.div(keep_prob) * random_tensor
63
+ return output
64
+
65
+
66
+ class DropPath(nn.Module):
67
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
68
+
69
+ def __init__(self, drop_prob=None):
70
+ super(DropPath, self).__init__()
71
+ self.drop_prob = drop_prob
72
+
73
+ def forward(self, x):
74
+ return drop_path(x, self.drop_prob, self.training)
75
+
76
+
77
+ class PatchEmbed(nn.Module):
78
+ """2D Image to Patch Embedding"""
79
+
80
+ def __init__(
81
+ self,
82
+ img_size=224,
83
+ patch_size=16,
84
+ in_chans=3,
85
+ embed_dim=768,
86
+ norm_layer=None,
87
+ flatten=True,
88
+ patch_stride=16,
89
+ enable_fusion=False,
90
+ fusion_type="None",
91
+ ):
92
+ super().__init__()
93
+ img_size = to_2tuple(img_size)
94
+ patch_size = to_2tuple(patch_size)
95
+ patch_stride = to_2tuple(patch_stride)
96
+ self.img_size = img_size
97
+ self.patch_size = patch_size
98
+ self.patch_stride = patch_stride
99
+ self.grid_size = (
100
+ img_size[0] // patch_stride[0],
101
+ img_size[1] // patch_stride[1],
102
+ )
103
+ self.num_patches = self.grid_size[0] * self.grid_size[1]
104
+ self.flatten = flatten
105
+ self.in_chans = in_chans
106
+ self.embed_dim = embed_dim
107
+
108
+ self.enable_fusion = enable_fusion
109
+ self.fusion_type = fusion_type
110
+
111
+ padding = (
112
+ (patch_size[0] - patch_stride[0]) // 2,
113
+ (patch_size[1] - patch_stride[1]) // 2,
114
+ )
115
+
116
+ if (self.enable_fusion) and (self.fusion_type == "channel_map"):
117
+ self.proj = nn.Conv2d(
118
+ in_chans * 4,
119
+ embed_dim,
120
+ kernel_size=patch_size,
121
+ stride=patch_stride,
122
+ padding=padding,
123
+ )
124
+ else:
125
+ self.proj = nn.Conv2d(
126
+ in_chans,
127
+ embed_dim,
128
+ kernel_size=patch_size,
129
+ stride=patch_stride,
130
+ padding=padding,
131
+ )
132
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
133
+
134
+ if (self.enable_fusion) and (
135
+ self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"]
136
+ ):
137
+ self.mel_conv2d = nn.Conv2d(
138
+ in_chans,
139
+ embed_dim,
140
+ kernel_size=(patch_size[0], patch_size[1] * 3),
141
+ stride=(patch_stride[0], patch_stride[1] * 3),
142
+ padding=padding,
143
+ )
144
+ if self.fusion_type == "daf_2d":
145
+ self.fusion_model = DAF()
146
+ elif self.fusion_type == "aff_2d":
147
+ self.fusion_model = AFF(channels=embed_dim, type="2D")
148
+ elif self.fusion_type == "iaff_2d":
149
+ self.fusion_model = iAFF(channels=embed_dim, type="2D")
150
+
151
+ def forward(self, x, longer_idx=None):
152
+ if (self.enable_fusion) and (
153
+ self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"]
154
+ ):
155
+ global_x = x[:, 0:1, :, :]
156
+
157
+ # global processing
158
+ B, C, H, W = global_x.shape
159
+ assert (
160
+ H == self.img_size[0] and W == self.img_size[1]
161
+ ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
162
+ global_x = self.proj(global_x)
163
+ TW = global_x.size(-1)
164
+ if len(longer_idx) > 0:
165
+ # local processing
166
+ local_x = x[longer_idx, 1:, :, :].contiguous()
167
+ B, C, H, W = local_x.shape
168
+ local_x = local_x.view(B * C, 1, H, W)
169
+ local_x = self.mel_conv2d(local_x)
170
+ local_x = local_x.view(
171
+ B, C, local_x.size(1), local_x.size(2), local_x.size(3)
172
+ )
173
+ local_x = local_x.permute((0, 2, 3, 1, 4)).contiguous().flatten(3)
174
+ TB, TC, TH, _ = local_x.size()
175
+ if local_x.size(-1) < TW:
176
+ local_x = torch.cat(
177
+ [
178
+ local_x,
179
+ torch.zeros(
180
+ (TB, TC, TH, TW - local_x.size(-1)),
181
+ device=global_x.device,
182
+ ),
183
+ ],
184
+ dim=-1,
185
+ )
186
+ else:
187
+ local_x = local_x[:, :, :, :TW]
188
+
189
+ global_x[longer_idx] = self.fusion_model(global_x[longer_idx], local_x)
190
+ x = global_x
191
+ else:
192
+ B, C, H, W = x.shape
193
+ assert (
194
+ H == self.img_size[0] and W == self.img_size[1]
195
+ ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
196
+ x = self.proj(x)
197
+
198
+ if self.flatten:
199
+ x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
200
+ x = self.norm(x)
201
+ return x
202
+
203
+
204
+ class Mlp(nn.Module):
205
+ """MLP as used in Vision Transformer, MLP-Mixer and related networks"""
206
+
207
+ def __init__(
208
+ self,
209
+ in_features,
210
+ hidden_features=None,
211
+ out_features=None,
212
+ act_layer=nn.GELU,
213
+ drop=0.0,
214
+ ):
215
+ super().__init__()
216
+ out_features = out_features or in_features
217
+ hidden_features = hidden_features or in_features
218
+ self.fc1 = nn.Linear(in_features, hidden_features)
219
+ self.act = act_layer()
220
+ self.fc2 = nn.Linear(hidden_features, out_features)
221
+ self.drop = nn.Dropout(drop)
222
+
223
+ def forward(self, x):
224
+ x = self.fc1(x)
225
+ x = self.act(x)
226
+ x = self.drop(x)
227
+ x = self.fc2(x)
228
+ x = self.drop(x)
229
+ return x
230
+
231
+
232
+ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
233
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
234
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
235
+ def norm_cdf(x):
236
+ # Computes standard normal cumulative distribution function
237
+ return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
238
+
239
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
240
+ warnings.warn(
241
+ "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
242
+ "The distribution of values may be incorrect.",
243
+ stacklevel=2,
244
+ )
245
+
246
+ with torch.no_grad():
247
+ # Values are generated by using a truncated uniform distribution and
248
+ # then using the inverse CDF for the normal distribution.
249
+ # Get upper and lower cdf values
250
+ l = norm_cdf((a - mean) / std)
251
+ u = norm_cdf((b - mean) / std)
252
+
253
+ # Uniformly fill tensor with values from [l, u], then translate to
254
+ # [2l-1, 2u-1].
255
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
256
+
257
+ # Use inverse cdf transform for normal distribution to get truncated
258
+ # standard normal
259
+ tensor.erfinv_()
260
+
261
+ # Transform to proper mean, std
262
+ tensor.mul_(std * math.sqrt(2.0))
263
+ tensor.add_(mean)
264
+
265
+ # Clamp to ensure it's in the proper range
266
+ tensor.clamp_(min=a, max=b)
267
+ return tensor
268
+
269
+
270
+ def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
271
+ # type: (Tensor, float, float, float, float) -> Tensor
272
+ r"""Fills the input Tensor with values drawn from a truncated
273
+ normal distribution. The values are effectively drawn from the
274
+ normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
275
+ with values outside :math:`[a, b]` redrawn until they are within
276
+ the bounds. The method used for generating the random values works
277
+ best when :math:`a \leq \text{mean} \leq b`.
278
+ Args:
279
+ tensor: an n-dimensional `torch.Tensor`
280
+ mean: the mean of the normal distribution
281
+ std: the standard deviation of the normal distribution
282
+ a: the minimum cutoff value
283
+ b: the maximum cutoff value
284
+ Examples:
285
+ >>> w = torch.empty(3, 5)
286
+ >>> nn.init.trunc_normal_(w)
287
+ """
288
+ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
289
+
290
+
291
+ def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
292
+ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
293
+ if mode == "fan_in":
294
+ denom = fan_in
295
+ elif mode == "fan_out":
296
+ denom = fan_out
297
+ elif mode == "fan_avg":
298
+ denom = (fan_in + fan_out) / 2
299
+
300
+ variance = scale / denom
301
+
302
+ if distribution == "truncated_normal":
303
+ # constant is stddev of standard normal truncated to (-2, 2)
304
+ trunc_normal_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
305
+ elif distribution == "normal":
306
+ tensor.normal_(std=math.sqrt(variance))
307
+ elif distribution == "uniform":
308
+ bound = math.sqrt(3 * variance)
309
+ tensor.uniform_(-bound, bound)
310
+ else:
311
+ raise ValueError(f"invalid distribution {distribution}")
312
+
313
+
314
+ def lecun_normal_(tensor):
315
+ variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
316
+
317
+
318
+ def window_partition(x, window_size):
319
+ """
320
+ Args:
321
+ x: (B, H, W, C)
322
+ window_size (int): window size
323
+ Returns:
324
+ windows: (num_windows*B, window_size, window_size, C)
325
+ """
326
+ B, H, W, C = x.shape
327
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
328
+ windows = (
329
+ x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
330
+ )
331
+ return windows
332
+
333
+
334
+ def window_reverse(windows, window_size, H, W):
335
+ """
336
+ Args:
337
+ windows: (num_windows*B, window_size, window_size, C)
338
+ window_size (int): Window size
339
+ H (int): Height of image
340
+ W (int): Width of image
341
+ Returns:
342
+ x: (B, H, W, C)
343
+ """
344
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
345
+ x = windows.view(
346
+ B, H // window_size, W // window_size, window_size, window_size, -1
347
+ )
348
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
349
+ return x
350
+
351
+
352
+ class WindowAttention(nn.Module):
353
+ r"""Window based multi-head self attention (W-MSA) module with relative position bias.
354
+ It supports both of shifted and non-shifted window.
355
+ Args:
356
+ dim (int): Number of input channels.
357
+ window_size (tuple[int]): The height and width of the window.
358
+ num_heads (int): Number of attention heads.
359
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
360
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
361
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
362
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
363
+ """
364
+
365
+ def __init__(
366
+ self,
367
+ dim,
368
+ window_size,
369
+ num_heads,
370
+ qkv_bias=True,
371
+ qk_scale=None,
372
+ attn_drop=0.0,
373
+ proj_drop=0.0,
374
+ ):
375
+
376
+ super().__init__()
377
+ self.dim = dim
378
+ self.window_size = window_size # Wh, Ww
379
+ self.num_heads = num_heads
380
+ head_dim = dim // num_heads
381
+ self.scale = qk_scale or head_dim**-0.5
382
+
383
+ # define a parameter table of relative position bias
384
+ self.relative_position_bias_table = nn.Parameter(
385
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
386
+ ) # 2*Wh-1 * 2*Ww-1, nH
387
+
388
+ # get pair-wise relative position index for each token inside the window
389
+ coords_h = torch.arange(self.window_size[0])
390
+ coords_w = torch.arange(self.window_size[1])
391
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
392
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
393
+ relative_coords = (
394
+ coords_flatten[:, :, None] - coords_flatten[:, None, :]
395
+ ) # 2, Wh*Ww, Wh*Ww
396
+ relative_coords = relative_coords.permute(
397
+ 1, 2, 0
398
+ ).contiguous() # Wh*Ww, Wh*Ww, 2
399
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
400
+ relative_coords[:, :, 1] += self.window_size[1] - 1
401
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
402
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
403
+ self.register_buffer("relative_position_index", relative_position_index)
404
+
405
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
406
+ self.attn_drop = nn.Dropout(attn_drop)
407
+ self.proj = nn.Linear(dim, dim)
408
+ self.proj_drop = nn.Dropout(proj_drop)
409
+
410
+ trunc_normal_(self.relative_position_bias_table, std=0.02)
411
+ self.softmax = nn.Softmax(dim=-1)
412
+
413
+ def forward(self, x, mask=None):
414
+ """
415
+ Args:
416
+ x: input features with shape of (num_windows*B, N, C)
417
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
418
+ """
419
+ B_, N, C = x.shape
420
+ qkv = (
421
+ self.qkv(x)
422
+ .reshape(B_, N, 3, self.num_heads, C // self.num_heads)
423
+ .permute(2, 0, 3, 1, 4)
424
+ )
425
+ q, k, v = (
426
+ qkv[0],
427
+ qkv[1],
428
+ qkv[2],
429
+ ) # make torchscript happy (cannot use tensor as tuple)
430
+
431
+ q = q * self.scale
432
+ attn = q @ k.transpose(-2, -1)
433
+
434
+ relative_position_bias = self.relative_position_bias_table[
435
+ self.relative_position_index.view(-1)
436
+ ].view(
437
+ self.window_size[0] * self.window_size[1],
438
+ self.window_size[0] * self.window_size[1],
439
+ -1,
440
+ ) # Wh*Ww,Wh*Ww,nH
441
+ relative_position_bias = relative_position_bias.permute(
442
+ 2, 0, 1
443
+ ).contiguous() # nH, Wh*Ww, Wh*Ww
444
+ attn = attn + relative_position_bias.unsqueeze(0)
445
+
446
+ if mask is not None:
447
+ nW = mask.shape[0]
448
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
449
+ 1
450
+ ).unsqueeze(0)
451
+ attn = attn.view(-1, self.num_heads, N, N)
452
+ attn = self.softmax(attn)
453
+ else:
454
+ attn = self.softmax(attn)
455
+
456
+ attn = self.attn_drop(attn)
457
+
458
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
459
+ x = self.proj(x)
460
+ x = self.proj_drop(x)
461
+ return x, attn
462
+
463
+ def extra_repr(self):
464
+ return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}"
465
+
466
+
467
+ # We use the model based on Swintransformer Block, therefore we can use the swin-transformer pretrained model
468
+ class SwinTransformerBlock(nn.Module):
469
+ r"""Swin Transformer Block.
470
+ Args:
471
+ dim (int): Number of input channels.
472
+ input_resolution (tuple[int]): Input resulotion.
473
+ num_heads (int): Number of attention heads.
474
+ window_size (int): Window size.
475
+ shift_size (int): Shift size for SW-MSA.
476
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
477
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
478
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
479
+ drop (float, optional): Dropout rate. Default: 0.0
480
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
481
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
482
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
483
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
484
+ """
485
+
486
+ def __init__(
487
+ self,
488
+ dim,
489
+ input_resolution,
490
+ num_heads,
491
+ window_size=7,
492
+ shift_size=0,
493
+ mlp_ratio=4.0,
494
+ qkv_bias=True,
495
+ qk_scale=None,
496
+ drop=0.0,
497
+ attn_drop=0.0,
498
+ drop_path=0.0,
499
+ act_layer=nn.GELU,
500
+ norm_layer=nn.LayerNorm,
501
+ norm_before_mlp="ln",
502
+ ):
503
+ super().__init__()
504
+ self.dim = dim
505
+ self.input_resolution = input_resolution
506
+ self.num_heads = num_heads
507
+ self.window_size = window_size
508
+ self.shift_size = shift_size
509
+ self.mlp_ratio = mlp_ratio
510
+ self.norm_before_mlp = norm_before_mlp
511
+ if min(self.input_resolution) <= self.window_size:
512
+ # if window size is larger than input resolution, we don't partition windows
513
+ self.shift_size = 0
514
+ self.window_size = min(self.input_resolution)
515
+ assert (
516
+ 0 <= self.shift_size < self.window_size
517
+ ), "shift_size must in 0-window_size"
518
+
519
+ self.norm1 = norm_layer(dim)
520
+ self.attn = WindowAttention(
521
+ dim,
522
+ window_size=to_2tuple(self.window_size),
523
+ num_heads=num_heads,
524
+ qkv_bias=qkv_bias,
525
+ qk_scale=qk_scale,
526
+ attn_drop=attn_drop,
527
+ proj_drop=drop,
528
+ )
529
+
530
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
531
+ if self.norm_before_mlp == "ln":
532
+ self.norm2 = nn.LayerNorm(dim)
533
+ elif self.norm_before_mlp == "bn":
534
+ self.norm2 = lambda x: nn.BatchNorm1d(dim)(x.transpose(1, 2)).transpose(
535
+ 1, 2
536
+ )
537
+ else:
538
+ raise NotImplementedError
539
+ mlp_hidden_dim = int(dim * mlp_ratio)
540
+ self.mlp = Mlp(
541
+ in_features=dim,
542
+ hidden_features=mlp_hidden_dim,
543
+ act_layer=act_layer,
544
+ drop=drop,
545
+ )
546
+
547
+ if self.shift_size > 0:
548
+ # calculate attention mask for SW-MSA
549
+ H, W = self.input_resolution
550
+ img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
551
+ h_slices = (
552
+ slice(0, -self.window_size),
553
+ slice(-self.window_size, -self.shift_size),
554
+ slice(-self.shift_size, None),
555
+ )
556
+ w_slices = (
557
+ slice(0, -self.window_size),
558
+ slice(-self.window_size, -self.shift_size),
559
+ slice(-self.shift_size, None),
560
+ )
561
+ cnt = 0
562
+ for h in h_slices:
563
+ for w in w_slices:
564
+ img_mask[:, h, w, :] = cnt
565
+ cnt += 1
566
+
567
+ mask_windows = window_partition(
568
+ img_mask, self.window_size
569
+ ) # nW, window_size, window_size, 1
570
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
571
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
572
+ attn_mask = attn_mask.masked_fill(
573
+ attn_mask != 0, float(-100.0)
574
+ ).masked_fill(attn_mask == 0, float(0.0))
575
+ else:
576
+ attn_mask = None
577
+
578
+ self.register_buffer("attn_mask", attn_mask)
579
+
580
+ def forward(self, x):
581
+ # pdb.set_trace()
582
+ H, W = self.input_resolution
583
+ # print("H: ", H)
584
+ # print("W: ", W)
585
+ # pdb.set_trace()
586
+ B, L, C = x.shape
587
+ # assert L == H * W, "input feature has wrong size"
588
+
589
+ shortcut = x
590
+ x = self.norm1(x)
591
+ x = x.view(B, H, W, C)
592
+
593
+ # cyclic shift
594
+ if self.shift_size > 0:
595
+ shifted_x = torch.roll(
596
+ x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
597
+ )
598
+ else:
599
+ shifted_x = x
600
+
601
+ # partition windows
602
+ x_windows = window_partition(
603
+ shifted_x, self.window_size
604
+ ) # nW*B, window_size, window_size, C
605
+ x_windows = x_windows.view(
606
+ -1, self.window_size * self.window_size, C
607
+ ) # nW*B, window_size*window_size, C
608
+
609
+ # W-MSA/SW-MSA
610
+ attn_windows, attn = self.attn(
611
+ x_windows, mask=self.attn_mask
612
+ ) # nW*B, window_size*window_size, C
613
+
614
+ # merge windows
615
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
616
+ shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
617
+
618
+ # reverse cyclic shift
619
+ if self.shift_size > 0:
620
+ x = torch.roll(
621
+ shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
622
+ )
623
+ else:
624
+ x = shifted_x
625
+ x = x.view(B, H * W, C)
626
+
627
+ # FFN
628
+ x = shortcut + self.drop_path(x)
629
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
630
+
631
+ return x, attn
632
+
633
+ def extra_repr(self):
634
+ return (
635
+ f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
636
+ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
637
+ )
638
+
639
+
640
+ class PatchMerging(nn.Module):
641
+ r"""Patch Merging Layer.
642
+ Args:
643
+ input_resolution (tuple[int]): Resolution of input feature.
644
+ dim (int): Number of input channels.
645
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
646
+ """
647
+
648
+ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
649
+ super().__init__()
650
+ self.input_resolution = input_resolution
651
+ self.dim = dim
652
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
653
+ self.norm = norm_layer(4 * dim)
654
+
655
+ def forward(self, x):
656
+ """
657
+ x: B, H*W, C
658
+ """
659
+ H, W = self.input_resolution
660
+ B, L, C = x.shape
661
+ assert L == H * W, "input feature has wrong size"
662
+ assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
663
+
664
+ x = x.view(B, H, W, C)
665
+
666
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
667
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
668
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
669
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
670
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
671
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
672
+
673
+ x = self.norm(x)
674
+ x = self.reduction(x)
675
+
676
+ return x
677
+
678
+ def extra_repr(self):
679
+ return f"input_resolution={self.input_resolution}, dim={self.dim}"
680
+
681
+
682
+ class BasicLayer(nn.Module):
683
+ """A basic Swin Transformer layer for one stage.
684
+ Args:
685
+ dim (int): Number of input channels.
686
+ input_resolution (tuple[int]): Input resolution.
687
+ depth (int): Number of blocks.
688
+ num_heads (int): Number of attention heads.
689
+ window_size (int): Local window size.
690
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
691
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
692
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
693
+ drop (float, optional): Dropout rate. Default: 0.0
694
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
695
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
696
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
697
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
698
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
699
+ """
700
+
701
+ def __init__(
702
+ self,
703
+ dim,
704
+ input_resolution,
705
+ depth,
706
+ num_heads,
707
+ window_size,
708
+ mlp_ratio=4.0,
709
+ qkv_bias=True,
710
+ qk_scale=None,
711
+ drop=0.0,
712
+ attn_drop=0.0,
713
+ drop_path=0.0,
714
+ norm_layer=nn.LayerNorm,
715
+ downsample=None,
716
+ use_checkpoint=False,
717
+ norm_before_mlp="ln",
718
+ ):
719
+
720
+ super().__init__()
721
+ self.dim = dim
722
+ self.input_resolution = input_resolution
723
+ self.depth = depth
724
+ self.use_checkpoint = use_checkpoint
725
+
726
+ # build blocks
727
+ self.blocks = nn.ModuleList(
728
+ [
729
+ SwinTransformerBlock(
730
+ dim=dim,
731
+ input_resolution=input_resolution,
732
+ num_heads=num_heads,
733
+ window_size=window_size,
734
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
735
+ mlp_ratio=mlp_ratio,
736
+ qkv_bias=qkv_bias,
737
+ qk_scale=qk_scale,
738
+ drop=drop,
739
+ attn_drop=attn_drop,
740
+ drop_path=drop_path[i]
741
+ if isinstance(drop_path, list)
742
+ else drop_path,
743
+ norm_layer=norm_layer,
744
+ norm_before_mlp=norm_before_mlp,
745
+ )
746
+ for i in range(depth)
747
+ ]
748
+ )
749
+
750
+ # patch merging layer
751
+ if downsample is not None:
752
+ self.downsample = downsample(
753
+ input_resolution, dim=dim, norm_layer=norm_layer
754
+ )
755
+ else:
756
+ self.downsample = None
757
+
758
+ def forward(self, x):
759
+ attns = []
760
+ for blk in self.blocks:
761
+ if self.use_checkpoint:
762
+ x = checkpoint.checkpoint(blk, x)
763
+ else:
764
+ x, attn = blk(x)
765
+ if not self.training:
766
+ attns.append(attn.unsqueeze(0))
767
+ if self.downsample is not None:
768
+ x = self.downsample(x)
769
+ if not self.training:
770
+ attn = torch.cat(attns, dim=0)
771
+ attn = torch.mean(attn, dim=0)
772
+ return x, attn
773
+
774
+ def extra_repr(self):
775
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
776
+
777
+
778
+ # The Core of HTSAT
779
+ class HTSAT_Swin_Transformer(nn.Module):
780
+ r"""HTSAT based on the Swin Transformer
781
+ Args:
782
+ spec_size (int | tuple(int)): Input Spectrogram size. Default 256
783
+ patch_size (int | tuple(int)): Patch size. Default: 4
784
+ path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4
785
+ in_chans (int): Number of input image channels. Default: 1 (mono)
786
+ num_classes (int): Number of classes for classification head. Default: 527
787
+ embed_dim (int): Patch embedding dimension. Default: 96
788
+ depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer.
789
+ num_heads (tuple(int)): Number of attention heads in different layers.
790
+ window_size (int): Window size. Default: 8
791
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
792
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
793
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
794
+ drop_rate (float): Dropout rate. Default: 0
795
+ attn_drop_rate (float): Attention dropout rate. Default: 0
796
+ drop_path_rate (float): Stochastic depth rate. Default: 0.1
797
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
798
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
799
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True
800
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
801
+ config (module): The configuration Module from config.py
802
+ """
803
+
804
+ def __init__(
805
+ self,
806
+ spec_size=256,
807
+ patch_size=4,
808
+ patch_stride=(4, 4),
809
+ in_chans=1,
810
+ num_classes=527,
811
+ embed_dim=96,
812
+ depths=[2, 2, 6, 2],
813
+ num_heads=[4, 8, 16, 32],
814
+ window_size=8,
815
+ mlp_ratio=4.0,
816
+ qkv_bias=True,
817
+ qk_scale=None,
818
+ drop_rate=0.0,
819
+ attn_drop_rate=0.0,
820
+ drop_path_rate=0.1,
821
+ norm_layer=nn.LayerNorm,
822
+ ape=False,
823
+ patch_norm=True,
824
+ use_checkpoint=False,
825
+ norm_before_mlp="ln",
826
+ config=None,
827
+ enable_fusion=False,
828
+ fusion_type="None",
829
+ **kwargs,
830
+ ):
831
+ super(HTSAT_Swin_Transformer, self).__init__()
832
+
833
+ self.config = config
834
+ self.spec_size = spec_size
835
+ self.patch_stride = patch_stride
836
+ self.patch_size = patch_size
837
+ self.window_size = window_size
838
+ self.embed_dim = embed_dim
839
+ self.depths = depths
840
+ self.ape = ape
841
+ self.in_chans = in_chans
842
+ self.num_classes = num_classes
843
+ self.num_heads = num_heads
844
+ self.num_layers = len(self.depths)
845
+ self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1))
846
+
847
+ self.drop_rate = drop_rate
848
+ self.attn_drop_rate = attn_drop_rate
849
+ self.drop_path_rate = drop_path_rate
850
+
851
+ self.qkv_bias = qkv_bias
852
+ self.qk_scale = None
853
+
854
+ self.patch_norm = patch_norm
855
+ self.norm_layer = norm_layer if self.patch_norm else None
856
+ self.norm_before_mlp = norm_before_mlp
857
+ self.mlp_ratio = mlp_ratio
858
+
859
+ self.use_checkpoint = use_checkpoint
860
+
861
+ self.enable_fusion = enable_fusion
862
+ self.fusion_type = fusion_type
863
+
864
+ # process mel-spec ; used only once
865
+ self.freq_ratio = self.spec_size // self.config.mel_bins
866
+ window = "hann"
867
+ center = True
868
+ pad_mode = "reflect"
869
+ ref = 1.0
870
+ amin = 1e-10
871
+ top_db = None
872
+ self.interpolate_ratio = 32 # Downsampled ratio
873
+ # Spectrogram extractor
874
+ self.spectrogram_extractor = Spectrogram(
875
+ n_fft=config.window_size,
876
+ hop_length=config.hop_size,
877
+ win_length=config.window_size,
878
+ window=window,
879
+ center=center,
880
+ pad_mode=pad_mode,
881
+ freeze_parameters=True,
882
+ )
883
+ # Logmel feature extractor
884
+ self.logmel_extractor = LogmelFilterBank(
885
+ sr=config.sample_rate,
886
+ n_fft=config.window_size,
887
+ n_mels=config.mel_bins,
888
+ fmin=config.fmin,
889
+ fmax=config.fmax,
890
+ ref=ref,
891
+ amin=amin,
892
+ top_db=top_db,
893
+ freeze_parameters=True,
894
+ )
895
+ # Spec augmenter
896
+ self.spec_augmenter = SpecAugmentation(
897
+ time_drop_width=64,
898
+ time_stripes_num=2,
899
+ freq_drop_width=8,
900
+ freq_stripes_num=2,
901
+ ) # 2 2
902
+ self.bn0 = nn.BatchNorm2d(self.config.mel_bins)
903
+
904
+ # split spctrogram into non-overlapping patches
905
+ self.patch_embed = PatchEmbed(
906
+ img_size=self.spec_size,
907
+ patch_size=self.patch_size,
908
+ in_chans=self.in_chans,
909
+ embed_dim=self.embed_dim,
910
+ norm_layer=self.norm_layer,
911
+ patch_stride=patch_stride,
912
+ enable_fusion=self.enable_fusion,
913
+ fusion_type=self.fusion_type,
914
+ )
915
+
916
+ num_patches = self.patch_embed.num_patches
917
+ patches_resolution = self.patch_embed.grid_size
918
+ self.patches_resolution = patches_resolution
919
+
920
+ # absolute position embedding
921
+ if self.ape:
922
+ self.absolute_pos_embed = nn.Parameter(
923
+ torch.zeros(1, num_patches, self.embed_dim)
924
+ )
925
+ trunc_normal_(self.absolute_pos_embed, std=0.02)
926
+
927
+ self.pos_drop = nn.Dropout(p=self.drop_rate)
928
+
929
+ # stochastic depth
930
+ dpr = [
931
+ x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))
932
+ ] # stochastic depth decay rule
933
+
934
+ # build layers
935
+ self.layers = nn.ModuleList()
936
+ for i_layer in range(self.num_layers):
937
+ layer = BasicLayer(
938
+ dim=int(self.embed_dim * 2**i_layer),
939
+ input_resolution=(
940
+ patches_resolution[0] // (2**i_layer),
941
+ patches_resolution[1] // (2**i_layer),
942
+ ),
943
+ depth=self.depths[i_layer],
944
+ num_heads=self.num_heads[i_layer],
945
+ window_size=self.window_size,
946
+ mlp_ratio=self.mlp_ratio,
947
+ qkv_bias=self.qkv_bias,
948
+ qk_scale=self.qk_scale,
949
+ drop=self.drop_rate,
950
+ attn_drop=self.attn_drop_rate,
951
+ drop_path=dpr[
952
+ sum(self.depths[:i_layer]) : sum(self.depths[: i_layer + 1])
953
+ ],
954
+ norm_layer=self.norm_layer,
955
+ downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
956
+ use_checkpoint=use_checkpoint,
957
+ norm_before_mlp=self.norm_before_mlp,
958
+ )
959
+ self.layers.append(layer)
960
+
961
+ self.norm = self.norm_layer(self.num_features)
962
+ self.avgpool = nn.AdaptiveAvgPool1d(1)
963
+ self.maxpool = nn.AdaptiveMaxPool1d(1)
964
+
965
+ SF = (
966
+ self.spec_size
967
+ // (2 ** (len(self.depths) - 1))
968
+ // self.patch_stride[0]
969
+ // self.freq_ratio
970
+ )
971
+ self.tscam_conv = nn.Conv2d(
972
+ in_channels=self.num_features,
973
+ out_channels=self.num_classes,
974
+ kernel_size=(SF, 3),
975
+ padding=(0, 1),
976
+ )
977
+ self.head = nn.Linear(num_classes, num_classes)
978
+
979
+ if (self.enable_fusion) and (
980
+ self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]
981
+ ):
982
+ self.mel_conv1d = nn.Sequential(
983
+ nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2),
984
+ nn.BatchNorm1d(64),
985
+ )
986
+ if self.fusion_type == "daf_1d":
987
+ self.fusion_model = DAF()
988
+ elif self.fusion_type == "aff_1d":
989
+ self.fusion_model = AFF(channels=64, type="1D")
990
+ elif self.fusion_type == "iaff_1d":
991
+ self.fusion_model = iAFF(channels=64, type="1D")
992
+
993
+ self.apply(self._init_weights)
994
+
995
+ def _init_weights(self, m):
996
+ if isinstance(m, nn.Linear):
997
+ trunc_normal_(m.weight, std=0.02)
998
+ if isinstance(m, nn.Linear) and m.bias is not None:
999
+ nn.init.constant_(m.bias, 0)
1000
+ elif isinstance(m, nn.LayerNorm):
1001
+ nn.init.constant_(m.bias, 0)
1002
+ nn.init.constant_(m.weight, 1.0)
1003
+
1004
+ @torch.jit.ignore
1005
+ def no_weight_decay(self):
1006
+ return {"absolute_pos_embed"}
1007
+
1008
+ @torch.jit.ignore
1009
+ def no_weight_decay_keywords(self):
1010
+ return {"relative_position_bias_table"}
1011
+
1012
+ def forward_features(self, x, longer_idx=None):
1013
+ # A deprecated optimization for using a hierarchical output from different blocks
1014
+
1015
+ frames_num = x.shape[2]
1016
+ x = self.patch_embed(x, longer_idx=longer_idx)
1017
+ if self.ape:
1018
+ x = x + self.absolute_pos_embed
1019
+ x = self.pos_drop(x)
1020
+ for i, layer in enumerate(self.layers):
1021
+ x, attn = layer(x)
1022
+ # for x
1023
+ x = self.norm(x)
1024
+ B, N, C = x.shape
1025
+ SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
1026
+ ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
1027
+ x = x.permute(0, 2, 1).contiguous().reshape(B, C, SF, ST)
1028
+ B, C, F, T = x.shape
1029
+ # group 2D CNN
1030
+ c_freq_bin = F // self.freq_ratio
1031
+ x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
1032
+ x = x.permute(0, 1, 3, 2, 4).contiguous().reshape(B, C, c_freq_bin, -1)
1033
+ # get latent_output
1034
+ fine_grained_latent_output = torch.mean(x, dim=2)
1035
+ fine_grained_latent_output = interpolate(
1036
+ fine_grained_latent_output.permute(0, 2, 1).contiguous(),
1037
+ 8 * self.patch_stride[1],
1038
+ )
1039
+
1040
+ latent_output = self.avgpool(torch.flatten(x, 2))
1041
+ latent_output = torch.flatten(latent_output, 1)
1042
+
1043
+ # display the attention map, if needed
1044
+
1045
+ x = self.tscam_conv(x)
1046
+ x = torch.flatten(x, 2) # B, C, T
1047
+
1048
+ fpx = interpolate(
1049
+ torch.sigmoid(x).permute(0, 2, 1).contiguous(), 8 * self.patch_stride[1]
1050
+ )
1051
+
1052
+ x = self.avgpool(x)
1053
+ x = torch.flatten(x, 1)
1054
+
1055
+ output_dict = {
1056
+ "framewise_output": fpx, # already sigmoided
1057
+ "clipwise_output": torch.sigmoid(x),
1058
+ "fine_grained_embedding": fine_grained_latent_output,
1059
+ "embedding": latent_output,
1060
+ }
1061
+
1062
+ return output_dict
1063
+
1064
+ def crop_wav(self, x, crop_size, spe_pos=None):
1065
+ time_steps = x.shape[2]
1066
+ tx = torch.zeros(x.shape[0], x.shape[1], crop_size, x.shape[3]).to(x.device)
1067
+ for i in range(len(x)):
1068
+ if spe_pos is None:
1069
+ crop_pos = random.randint(0, time_steps - crop_size - 1)
1070
+ else:
1071
+ crop_pos = spe_pos
1072
+ tx[i][0] = x[i, 0, crop_pos : crop_pos + crop_size, :]
1073
+ return tx
1074
+
1075
+ # Reshape the wavform to a img size, if you want to use the pretrained swin transformer model
1076
+ def reshape_wav2img(self, x):
1077
+ B, C, T, F = x.shape
1078
+ target_T = int(self.spec_size * self.freq_ratio)
1079
+ target_F = self.spec_size // self.freq_ratio
1080
+ assert (
1081
+ T <= target_T and F <= target_F
1082
+ ), "the wav size should less than or equal to the swin input size"
1083
+ # to avoid bicubic zero error
1084
+ if T < target_T:
1085
+ x = nn.functional.interpolate(
1086
+ x, (target_T, x.shape[3]), mode="bicubic", align_corners=True
1087
+ )
1088
+ if F < target_F:
1089
+ x = nn.functional.interpolate(
1090
+ x, (x.shape[2], target_F), mode="bicubic", align_corners=True
1091
+ )
1092
+ x = x.permute(0, 1, 3, 2).contiguous()
1093
+ x = x.reshape(
1094
+ x.shape[0],
1095
+ x.shape[1],
1096
+ x.shape[2],
1097
+ self.freq_ratio,
1098
+ x.shape[3] // self.freq_ratio,
1099
+ )
1100
+ # print(x.shape)
1101
+ x = x.permute(0, 1, 3, 2, 4).contiguous()
1102
+ x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3], x.shape[4])
1103
+ return x
1104
+
1105
+ # Repeat the wavform to a img size, if you want to use the pretrained swin transformer model
1106
+ def repeat_wat2img(self, x, cur_pos):
1107
+ B, C, T, F = x.shape
1108
+ target_T = int(self.spec_size * self.freq_ratio)
1109
+ target_F = self.spec_size // self.freq_ratio
1110
+ assert (
1111
+ T <= target_T and F <= target_F
1112
+ ), "the wav size should less than or equal to the swin input size"
1113
+ # to avoid bicubic zero error
1114
+ if T < target_T:
1115
+ x = nn.functional.interpolate(
1116
+ x, (target_T, x.shape[3]), mode="bicubic", align_corners=True
1117
+ )
1118
+ if F < target_F:
1119
+ x = nn.functional.interpolate(
1120
+ x, (x.shape[2], target_F), mode="bicubic", align_corners=True
1121
+ )
1122
+ x = x.permute(0, 1, 3, 2).contiguous() # B C F T
1123
+ x = x[:, :, :, cur_pos : cur_pos + self.spec_size]
1124
+ x = x.repeat(repeats=(1, 1, 4, 1))
1125
+ return x
1126
+
1127
+ def forward(
1128
+ self, x: torch.Tensor, mixup_lambda=None, infer_mode=False, device=None
1129
+ ): # out_feat_keys: List[str] = None):
1130
+
1131
+ if self.enable_fusion and x["longer"].sum() == 0:
1132
+ # if no audio is longer than 10s, then randomly select one audio to be longer
1133
+ x["longer"][torch.randint(0, x["longer"].shape[0], (1,))] = True
1134
+
1135
+ if not self.enable_fusion:
1136
+ x = x["waveform"].to(device=device, non_blocking=True)
1137
+ x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins)
1138
+ x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
1139
+ x = x.transpose(1, 3)
1140
+ x = self.bn0(x)
1141
+ x = x.transpose(1, 3)
1142
+ if self.training:
1143
+ x = self.spec_augmenter(x)
1144
+
1145
+ if self.training and mixup_lambda is not None:
1146
+ x = do_mixup(x, mixup_lambda)
1147
+
1148
+ x = self.reshape_wav2img(x)
1149
+ output_dict = self.forward_features(x)
1150
+ else:
1151
+ longer_list = x["longer"].to(device=device, non_blocking=True)
1152
+ x = x["mel_fusion"].to(device=device, non_blocking=True)
1153
+ x = x.transpose(1, 3)
1154
+ x = self.bn0(x)
1155
+ x = x.transpose(1, 3)
1156
+ longer_list_idx = torch.where(longer_list)[0]
1157
+ if self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]:
1158
+ new_x = x[:, 0:1, :, :].clone().contiguous()
1159
+ if len(longer_list_idx) > 0:
1160
+ # local processing
1161
+ fusion_x_local = x[longer_list_idx, 1:, :, :].clone().contiguous()
1162
+ FB, FC, FT, FF = fusion_x_local.size()
1163
+ fusion_x_local = fusion_x_local.view(FB * FC, FT, FF)
1164
+ fusion_x_local = torch.permute(
1165
+ fusion_x_local, (0, 2, 1)
1166
+ ).contiguous()
1167
+ fusion_x_local = self.mel_conv1d(fusion_x_local)
1168
+ fusion_x_local = fusion_x_local.view(
1169
+ FB, FC, FF, fusion_x_local.size(-1)
1170
+ )
1171
+ fusion_x_local = (
1172
+ torch.permute(fusion_x_local, (0, 2, 1, 3))
1173
+ .contiguous()
1174
+ .flatten(2)
1175
+ )
1176
+ if fusion_x_local.size(-1) < FT:
1177
+ fusion_x_local = torch.cat(
1178
+ [
1179
+ fusion_x_local,
1180
+ torch.zeros(
1181
+ (FB, FF, FT - fusion_x_local.size(-1)),
1182
+ device=device,
1183
+ ),
1184
+ ],
1185
+ dim=-1,
1186
+ )
1187
+ else:
1188
+ fusion_x_local = fusion_x_local[:, :, :FT]
1189
+ # 1D fusion
1190
+ new_x = new_x.squeeze(1).permute((0, 2, 1)).contiguous()
1191
+ new_x[longer_list_idx] = self.fusion_model(
1192
+ new_x[longer_list_idx], fusion_x_local
1193
+ )
1194
+ x = new_x.permute((0, 2, 1)).contiguous()[:, None, :, :]
1195
+ else:
1196
+ x = new_x
1197
+
1198
+ elif self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d", "channel_map"]:
1199
+ x = x # no change
1200
+
1201
+ if self.training:
1202
+ x = self.spec_augmenter(x)
1203
+ if self.training and mixup_lambda is not None:
1204
+ x = do_mixup(x, mixup_lambda)
1205
+
1206
+ x = self.reshape_wav2img(x)
1207
+ output_dict = self.forward_features(x, longer_idx=longer_list_idx)
1208
+
1209
+ # if infer_mode:
1210
+ # # in infer mode. we need to handle different length audio input
1211
+ # frame_num = x.shape[2]
1212
+ # target_T = int(self.spec_size * self.freq_ratio)
1213
+ # repeat_ratio = math.floor(target_T / frame_num)
1214
+ # x = x.repeat(repeats=(1,1,repeat_ratio,1))
1215
+ # x = self.reshape_wav2img(x)
1216
+ # output_dict = self.forward_features(x)
1217
+ # else:
1218
+ # if x.shape[2] > self.freq_ratio * self.spec_size:
1219
+ # if self.training:
1220
+ # x = self.crop_wav(x, crop_size=self.freq_ratio * self.spec_size)
1221
+ # x = self.reshape_wav2img(x)
1222
+ # output_dict = self.forward_features(x)
1223
+ # else:
1224
+ # # Change: Hard code here
1225
+ # overlap_size = (x.shape[2] - 1) // 4
1226
+ # output_dicts = []
1227
+ # crop_size = (x.shape[2] - 1) // 2
1228
+ # for cur_pos in range(0, x.shape[2] - crop_size - 1, overlap_size):
1229
+ # tx = self.crop_wav(x, crop_size = crop_size, spe_pos = cur_pos)
1230
+ # tx = self.reshape_wav2img(tx)
1231
+ # output_dicts.append(self.forward_features(tx))
1232
+ # clipwise_output = torch.zeros_like(output_dicts[0]["clipwise_output"]).float().to(x.device)
1233
+ # framewise_output = torch.zeros_like(output_dicts[0]["framewise_output"]).float().to(x.device)
1234
+ # for d in output_dicts:
1235
+ # clipwise_output += d["clipwise_output"]
1236
+ # framewise_output += d["framewise_output"]
1237
+ # clipwise_output = clipwise_output / len(output_dicts)
1238
+ # framewise_output = framewise_output / len(output_dicts)
1239
+ # output_dict = {
1240
+ # 'framewise_output': framewise_output,
1241
+ # 'clipwise_output': clipwise_output
1242
+ # }
1243
+ # else: # this part is typically used, and most easy one
1244
+ # x = self.reshape_wav2img(x)
1245
+ # output_dict = self.forward_features(x)
1246
+ # x = self.head(x)
1247
+
1248
+ # We process the data in the dataloader part, in that here we only consider the input_T < fixed_T
1249
+
1250
+ return output_dict
1251
+
1252
+
1253
+ def create_htsat_model(audio_cfg, enable_fusion=False, fusion_type="None"):
1254
+ try:
1255
+
1256
+ assert audio_cfg.model_name in [
1257
+ "tiny",
1258
+ "base",
1259
+ "large",
1260
+ ], "model name for HTS-AT is wrong!"
1261
+ if audio_cfg.model_name == "tiny":
1262
+ model = HTSAT_Swin_Transformer(
1263
+ spec_size=256,
1264
+ patch_size=4,
1265
+ patch_stride=(4, 4),
1266
+ num_classes=audio_cfg.class_num,
1267
+ embed_dim=96,
1268
+ depths=[2, 2, 6, 2],
1269
+ num_heads=[4, 8, 16, 32],
1270
+ window_size=8,
1271
+ config=audio_cfg,
1272
+ enable_fusion=enable_fusion,
1273
+ fusion_type=fusion_type,
1274
+ )
1275
+ elif audio_cfg.model_name == "base":
1276
+ model = HTSAT_Swin_Transformer(
1277
+ spec_size=256,
1278
+ patch_size=4,
1279
+ patch_stride=(4, 4),
1280
+ num_classes=audio_cfg.class_num,
1281
+ embed_dim=128,
1282
+ depths=[2, 2, 12, 2],
1283
+ num_heads=[4, 8, 16, 32],
1284
+ window_size=8,
1285
+ config=audio_cfg,
1286
+ enable_fusion=enable_fusion,
1287
+ fusion_type=fusion_type,
1288
+ )
1289
+ elif audio_cfg.model_name == "large":
1290
+ model = HTSAT_Swin_Transformer(
1291
+ spec_size=256,
1292
+ patch_size=4,
1293
+ patch_stride=(4, 4),
1294
+ num_classes=audio_cfg.class_num,
1295
+ embed_dim=256,
1296
+ depths=[2, 2, 12, 2],
1297
+ num_heads=[4, 8, 16, 32],
1298
+ window_size=8,
1299
+ config=audio_cfg,
1300
+ enable_fusion=enable_fusion,
1301
+ fusion_type=fusion_type,
1302
+ )
1303
+
1304
+ return model
1305
+ except:
1306
+ raise RuntimeError(
1307
+ f"Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough."
1308
+ )
audioldm/clap/open_clip/linear_probe.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch.nn.functional as F
3
+ from torch import nn
4
+ from .model import MLPLayers
5
+
6
+
7
+ class LinearProbe(nn.Module):
8
+ def __init__(self, model, mlp, freeze, in_ch, out_ch, act=None):
9
+ """
10
+ Args:
11
+ model: nn.Module
12
+ mlp: bool, if True, then use the MLP layer as the linear probe module
13
+ freeze: bool, if Ture, then freeze all the CLAP model's layers when training the linear probe
14
+ in_ch: int, the output channel from CLAP model
15
+ out_ch: int, the output channel from linear probe (class_num)
16
+ act: torch.nn.functional, the activation function before the loss function
17
+ """
18
+ super().__init__()
19
+ in_ch = 512
20
+ self.clap_model = model
21
+ self.clap_model.text_branch = None # to save memory
22
+ self.freeze = freeze
23
+ if mlp:
24
+ self.lp_layer = MLPLayers(units=[in_ch, in_ch * 2, out_ch])
25
+ else:
26
+ self.lp_layer = nn.Linear(in_ch, out_ch)
27
+
28
+ if self.freeze:
29
+ for param in self.clap_model.parameters():
30
+ param.requires_grad = False
31
+
32
+ if act == "None":
33
+ self.act = None
34
+ elif act == "relu":
35
+ self.act = nn.ReLU()
36
+ elif act == "elu":
37
+ self.act = nn.ELU()
38
+ elif act == "prelu":
39
+ self.act = nn.PReLU(num_parameters=in_ch)
40
+ elif act == "softmax":
41
+ self.act = nn.Softmax(dim=-1)
42
+ elif act == "sigmoid":
43
+ self.act = nn.Sigmoid()
44
+
45
+ def forward(self, x, mix_lambda=None, device=None):
46
+ """
47
+ Args:
48
+ x: waveform, torch.tensor [batch, t_samples] / batch of mel_spec and longer list
49
+ mix_lambda: torch.tensor [batch], the mixup lambda
50
+ Returns:
51
+ class_prob: torch.tensor [batch, class_num]
52
+
53
+ """
54
+ # batchnorm cancel grandient
55
+ if self.freeze:
56
+ self.clap_model.eval()
57
+
58
+ x = self.clap_model.audio_projection(
59
+ self.clap_model.audio_branch(x, mixup_lambda=mix_lambda, device=device)[
60
+ "embedding"
61
+ ]
62
+ )
63
+ out = self.lp_layer(x)
64
+ if self.act is not None:
65
+ out = self.act(out)
66
+ return out
audioldm/clap/open_clip/loss.py ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from multiprocessing.sharedctypes import Value
2
+ import torch
3
+ import torch.distributed.nn
4
+ from torch import distributed as dist, nn as nn
5
+ from torch.nn import functional as F
6
+ import numpy as np
7
+ from sklearn.metrics import average_precision_score, roc_auc_score, accuracy_score
8
+
9
+ try:
10
+ import horovod.torch as hvd
11
+ except ImportError:
12
+ hvd = None
13
+
14
+
15
+ def gather_features(
16
+ audio_features,
17
+ text_features,
18
+ audio_features_mlp=None,
19
+ text_features_mlp=None,
20
+ local_loss=False,
21
+ gather_with_grad=False,
22
+ rank=0,
23
+ world_size=1,
24
+ use_horovod=False,
25
+ mlp_loss=False,
26
+ ):
27
+ if use_horovod:
28
+ assert hvd is not None, "Please install horovod"
29
+ if gather_with_grad:
30
+ all_audio_features = hvd.allgather(audio_features)
31
+ all_text_features = hvd.allgather(text_features)
32
+ if mlp_loss:
33
+ all_audio_features_mlp = hvd.allgather(audio_features_mlp)
34
+ all_text_features_mlp = hvd.allgather(text_features_mlp)
35
+ else:
36
+ with torch.no_grad():
37
+ all_audio_features = hvd.allgather(audio_features)
38
+ all_text_features = hvd.allgather(text_features)
39
+ if mlp_loss:
40
+ all_audio_features_mlp = hvd.allgather(audio_features_mlp)
41
+ all_text_features_mlp = hvd.allgather(text_features_mlp)
42
+ if not local_loss:
43
+ # ensure grads for local rank when all_* features don't have a gradient
44
+ gathered_audio_features = list(
45
+ all_audio_features.chunk(world_size, dim=0)
46
+ )
47
+ gathered_text_features = list(
48
+ all_text_features.chunk(world_size, dim=0)
49
+ )
50
+ gathered_audio_features[rank] = audio_features
51
+ gathered_text_features[rank] = text_features
52
+ all_audio_features = torch.cat(gathered_audio_features, dim=0)
53
+ all_text_features = torch.cat(gathered_text_features, dim=0)
54
+ if mlp_loss:
55
+ gathered_audio_features_mlp = list(
56
+ all_audio_features_mlp.chunk(world_size, dim=0)
57
+ )
58
+ gathered_text_features_mlp = list(
59
+ all_text_features_mlp.chunk(world_size, dim=0)
60
+ )
61
+ gathered_audio_features_mlp[rank] = audio_features_mlp
62
+ gathered_text_features_mlp[rank] = text_features_mlp
63
+ all_audio_features_mlp = torch.cat(
64
+ gathered_audio_features_mlp, dim=0
65
+ )
66
+ all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0)
67
+ else:
68
+ # We gather tensors from all gpus
69
+ if gather_with_grad:
70
+ all_audio_features = torch.cat(
71
+ torch.distributed.nn.all_gather(audio_features), dim=0
72
+ )
73
+ all_text_features = torch.cat(
74
+ torch.distributed.nn.all_gather(text_features), dim=0
75
+ )
76
+ if mlp_loss:
77
+ all_audio_features_mlp = torch.cat(
78
+ torch.distributed.nn.all_gather(audio_features_mlp), dim=0
79
+ )
80
+ all_text_features_mlp = torch.cat(
81
+ torch.distributed.nn.all_gather(text_features_mlp), dim=0
82
+ )
83
+ else:
84
+ gathered_audio_features = [
85
+ torch.zeros_like(audio_features) for _ in range(world_size)
86
+ ]
87
+ gathered_text_features = [
88
+ torch.zeros_like(text_features) for _ in range(world_size)
89
+ ]
90
+ dist.all_gather(gathered_audio_features, audio_features)
91
+ dist.all_gather(gathered_text_features, text_features)
92
+ if mlp_loss:
93
+ gathered_audio_features_mlp = [
94
+ torch.zeros_like(audio_features_mlp) for _ in range(world_size)
95
+ ]
96
+ gathered_text_features_mlp = [
97
+ torch.zeros_like(text_features_mlp) for _ in range(world_size)
98
+ ]
99
+ dist.all_gather(gathered_audio_features_mlp, audio_features_mlp)
100
+ dist.all_gather(gathered_text_features_mlp, text_features_mlp)
101
+ if not local_loss:
102
+ # ensure grads for local rank when all_* features don't have a gradient
103
+ gathered_audio_features[rank] = audio_features
104
+ gathered_text_features[rank] = text_features
105
+ if mlp_loss:
106
+ gathered_audio_features_mlp[rank] = audio_features_mlp
107
+ gathered_text_features_mlp[rank] = text_features_mlp
108
+
109
+ all_audio_features = torch.cat(gathered_audio_features, dim=0)
110
+ all_text_features = torch.cat(gathered_text_features, dim=0)
111
+ if mlp_loss:
112
+ all_audio_features_mlp = torch.cat(gathered_audio_features_mlp, dim=0)
113
+ all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0)
114
+ if mlp_loss:
115
+ return (
116
+ all_audio_features,
117
+ all_text_features,
118
+ all_audio_features_mlp,
119
+ all_text_features_mlp,
120
+ )
121
+ else:
122
+ return all_audio_features, all_text_features
123
+
124
+
125
+ class ClipLoss(nn.Module):
126
+ def __init__(
127
+ self,
128
+ local_loss=False,
129
+ gather_with_grad=False,
130
+ cache_labels=False,
131
+ rank=0,
132
+ world_size=1,
133
+ use_horovod=False,
134
+ mlp_loss=False,
135
+ weight_loss_kappa=0,
136
+ ):
137
+ super().__init__()
138
+ self.local_loss = local_loss
139
+ self.gather_with_grad = gather_with_grad
140
+ self.cache_labels = cache_labels
141
+ self.rank = rank
142
+ self.world_size = world_size
143
+ self.use_horovod = use_horovod
144
+ self.mlp_loss = mlp_loss
145
+ self.weighted_loss = bool(weight_loss_kappa != 0)
146
+ self.weight_loss_kappa = weight_loss_kappa
147
+ # cache state
148
+ self.prev_num_logits = 0
149
+ self.labels = {}
150
+
151
+ def forward(
152
+ self,
153
+ audio_features,
154
+ text_features,
155
+ logit_scale_a,
156
+ logit_scale_t=None,
157
+ audio_features_mlp=None,
158
+ text_features_mlp=None,
159
+ ):
160
+ device = audio_features.device
161
+ if self.mlp_loss:
162
+ if self.world_size > 1:
163
+ (
164
+ all_audio_features,
165
+ all_text_features,
166
+ all_audio_features_mlp,
167
+ all_text_features_mlp,
168
+ ) = gather_features(
169
+ audio_features=audio_features,
170
+ text_features=text_features,
171
+ audio_features_mlp=audio_features_mlp,
172
+ text_features_mlp=text_features_mlp,
173
+ local_loss=self.local_loss,
174
+ gather_with_grad=self.gather_with_grad,
175
+ rank=self.rank,
176
+ world_size=self.world_size,
177
+ use_horovod=self.use_horovod,
178
+ mlp_loss=self.mlp_loss,
179
+ )
180
+ if self.local_loss:
181
+ a_logits_per_audio = (
182
+ logit_scale_a * audio_features @ all_text_features_mlp.T
183
+ )
184
+ a_logits_per_text = (
185
+ logit_scale_a * text_features_mlp @ all_audio_features.T
186
+ )
187
+ t_logits_per_audio = (
188
+ logit_scale_t * audio_features_mlp @ all_text_features.T
189
+ )
190
+ t_logits_per_text = (
191
+ logit_scale_t * text_features @ all_audio_features_mlp.T
192
+ )
193
+ else:
194
+ a_logits_per_audio = (
195
+ logit_scale_a * all_audio_features @ all_text_features_mlp.T
196
+ )
197
+ a_logits_per_text = a_logits_per_audio.T
198
+ t_logits_per_audio = (
199
+ logit_scale_t * all_audio_features_mlp @ all_text_features.T
200
+ )
201
+ t_logits_per_text = t_logits_per_audio.T
202
+ else:
203
+ a_logits_per_audio = (
204
+ logit_scale_a * audio_features @ text_features_mlp.T
205
+ )
206
+ a_logits_per_text = logit_scale_a * text_features_mlp @ audio_features.T
207
+ t_logits_per_audio = (
208
+ logit_scale_t * audio_features_mlp @ text_features.T
209
+ )
210
+ t_logits_per_text = logit_scale_t * text_features @ audio_features_mlp.T
211
+
212
+ # calculated ground-truth and cache if enabled
213
+ num_logits = a_logits_per_audio.shape[0]
214
+ if self.prev_num_logits != num_logits or device not in self.labels:
215
+ labels = torch.arange(num_logits, device=device, dtype=torch.long)
216
+ if self.world_size > 1 and self.local_loss:
217
+ labels = labels + num_logits * self.rank
218
+ if self.cache_labels:
219
+ self.labels[device] = labels
220
+ self.prev_num_logits = num_logits
221
+ else:
222
+ labels = self.labels[device]
223
+
224
+ if not self.weighted_loss:
225
+ total_loss = (
226
+ F.cross_entropy(a_logits_per_audio, labels)
227
+ + F.cross_entropy(a_logits_per_text, labels)
228
+ + F.cross_entropy(t_logits_per_audio, labels)
229
+ + F.cross_entropy(t_logits_per_text, labels)
230
+ ) / 4
231
+ else:
232
+ audio_weight = (audio_features @ audio_features.T).detach()
233
+ audio_weight = (
234
+ torch.exp(
235
+ torch.sum(audio_weight, axis=1)
236
+ / (self.weight_loss_kappa * len(audio_weight))
237
+ )
238
+ ).detach()
239
+ text_weight = (text_features @ text_features.T).detach()
240
+ text_weight = (
241
+ torch.exp(
242
+ torch.sum(text_weight, axis=1)
243
+ / (self.weight_loss_kappa * len(text_features))
244
+ )
245
+ ).detach()
246
+ total_loss = (
247
+ F.cross_entropy(a_logits_per_audio, labels, weight=audio_weight)
248
+ + F.cross_entropy(a_logits_per_text, labels, weight=audio_weight)
249
+ + F.cross_entropy(t_logits_per_audio, labels, weight=text_weight)
250
+ + F.cross_entropy(t_logits_per_text, labels, weight=text_weight)
251
+ ) / 4
252
+ else:
253
+ if self.world_size > 1:
254
+ all_audio_features, all_text_features = gather_features(
255
+ audio_features=audio_features,
256
+ text_features=text_features,
257
+ local_loss=self.local_loss,
258
+ gather_with_grad=self.gather_with_grad,
259
+ rank=self.rank,
260
+ world_size=self.world_size,
261
+ use_horovod=self.use_horovod,
262
+ mlp_loss=self.mlp_loss,
263
+ )
264
+
265
+ if self.local_loss:
266
+ logits_per_audio = (
267
+ logit_scale_a * audio_features @ all_text_features.T
268
+ )
269
+ logits_per_text = (
270
+ logit_scale_a * text_features @ all_audio_features.T
271
+ )
272
+ else:
273
+ logits_per_audio = (
274
+ logit_scale_a * all_audio_features @ all_text_features.T
275
+ )
276
+ logits_per_text = logits_per_audio.T
277
+ else:
278
+ logits_per_audio = logit_scale_a * audio_features @ text_features.T
279
+ logits_per_text = logit_scale_a * text_features @ audio_features.T
280
+
281
+ # calculated ground-truth and cache if enabled
282
+ num_logits = logits_per_audio.shape[0]
283
+ if self.prev_num_logits != num_logits or device not in self.labels:
284
+ labels = torch.arange(num_logits, device=device, dtype=torch.long)
285
+ if self.world_size > 1 and self.local_loss:
286
+ labels = labels + num_logits * self.rank
287
+ if self.cache_labels:
288
+ self.labels[device] = labels
289
+ self.prev_num_logits = num_logits
290
+ else:
291
+ labels = self.labels[device]
292
+ if not self.weighted_loss:
293
+ total_loss = (
294
+ F.cross_entropy(logits_per_audio, labels)
295
+ + F.cross_entropy(logits_per_text, labels)
296
+ ) / 2
297
+ else:
298
+ audio_weight = (all_audio_features @ all_audio_features.T).detach()
299
+ audio_weight = (
300
+ torch.exp(
301
+ torch.sum(audio_weight, axis=1)
302
+ / (self.weight_loss_kappa * len(all_audio_features))
303
+ )
304
+ ).detach()
305
+ text_weight = (all_text_features @ all_text_features.T).detach()
306
+ text_weight = (
307
+ torch.exp(
308
+ torch.sum(text_weight, axis=1)
309
+ / (self.weight_loss_kappa * len(all_text_features))
310
+ )
311
+ ).detach()
312
+ total_loss = (
313
+ F.cross_entropy(logits_per_audio, labels, weight=text_weight)
314
+ + F.cross_entropy(logits_per_text, labels, weight=audio_weight)
315
+ ) / 2
316
+ return total_loss
317
+
318
+
319
+ def lp_gather_features(pred, target, world_size=1, use_horovod=False):
320
+ if use_horovod:
321
+ assert hvd is not None, "Please install horovod"
322
+ with torch.no_grad():
323
+ all_preds = hvd.allgather(pred)
324
+ all_targets = hvd.allgath(target)
325
+ else:
326
+ gathered_preds = [torch.zeros_like(pred) for _ in range(world_size)]
327
+ gathered_targets = [torch.zeros_like(target) for _ in range(world_size)]
328
+
329
+ dist.all_gather(gathered_preds, pred)
330
+ dist.all_gather(gathered_targets, target)
331
+ all_preds = torch.cat(gathered_preds, dim=0)
332
+ all_targets = torch.cat(gathered_targets, dim=0)
333
+
334
+ return all_preds, all_targets
335
+
336
+
337
+ def get_map(pred, target):
338
+ pred = torch.sigmoid(pred).numpy()
339
+ target = target.numpy()
340
+ return np.mean(average_precision_score(target, pred, average=None))
341
+
342
+
343
+ def get_acc(pred, target):
344
+ pred = torch.argmax(pred, 1).numpy()
345
+ target = torch.argmax(target, 1).numpy()
346
+ return accuracy_score(target, pred)
347
+
348
+
349
+ def get_mauc(pred, target):
350
+ pred = torch.sigmoid(pred).numpy()
351
+ target = target.numpy()
352
+ return np.mean(roc_auc_score(target, pred, average=None))
353
+
354
+
355
+ class LPMetrics(object):
356
+ def __init__(self, metric_names=["map", "acc", "mauc"]):
357
+ self.metrics = []
358
+ for name in metric_names:
359
+ self.metrics.append(self.get_metric(name))
360
+ self.metric_names = metric_names
361
+
362
+ def get_metric(self, name):
363
+ if name == "map":
364
+ return get_map
365
+ elif name == "acc":
366
+ return get_acc
367
+ elif name == "mauc":
368
+ return get_mauc
369
+ else:
370
+ raise ValueError(f"the metric should be at least one of [map, acc, mauc]")
371
+
372
+ def evaluate_mertics(self, pred, target):
373
+ metric_dict = {}
374
+ for i in range(len(self.metric_names)):
375
+ metric_dict[self.metric_names[i]] = self.metrics[i](pred, target)
376
+ return metric_dict
377
+
378
+
379
+ def calc_celoss(pred, target):
380
+ target = torch.argmax(target, 1).long()
381
+ return nn.CrossEntropyLoss()(pred, target)
382
+
383
+
384
+ class LPLoss(nn.Module):
385
+ def __init__(self, loss_name):
386
+ super().__init__()
387
+ if loss_name == "bce":
388
+ self.loss_func = nn.BCEWithLogitsLoss()
389
+ elif loss_name == "ce":
390
+ self.loss_func = calc_celoss
391
+ elif loss_name == "mse":
392
+ self.loss_func = nn.MSELoss()
393
+ else:
394
+ raise ValueError(f"the loss func should be at least one of [bce, ce, mse]")
395
+
396
+ def forward(self, pred, target):
397
+ loss = self.loss_func(pred, target)
398
+ return loss
audioldm/clap/open_clip/model.py ADDED
@@ -0,0 +1,936 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ CLAP Model
2
+
3
+ Adapted from CLIP: https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
4
+ Adapted to the Audio Task.
5
+ """
6
+
7
+ from collections import OrderedDict
8
+ from dataclasses import dataclass
9
+ from email.mime import audio
10
+ from typing import Tuple, Union, Callable, Optional
11
+
12
+ import numpy as np
13
+ import torch
14
+ import torch.nn.functional as F
15
+ from torch import nn
16
+
17
+ from .timm_model import TimmModel
18
+ import logging
19
+ from .utils import freeze_batch_norm_2d
20
+
21
+ from .pann_model import create_pann_model
22
+ from .htsat import create_htsat_model
23
+ from transformers import BertModel, RobertaModel, BartModel
24
+ from transformers.tokenization_utils_base import BatchEncoding
25
+
26
+
27
+ class MLPLayers(nn.Module):
28
+ def __init__(self, units=[512, 512, 512], nonlin=nn.ReLU(), dropout=0.1):
29
+ super(MLPLayers, self).__init__()
30
+ self.nonlin = nonlin
31
+ self.dropout = dropout
32
+
33
+ sequence = []
34
+ for u0, u1 in zip(units[:-1], units[1:]):
35
+ sequence.append(nn.Linear(u0, u1))
36
+ sequence.append(self.nonlin)
37
+ sequence.append(nn.Dropout(self.dropout))
38
+ sequence = sequence[:-2]
39
+
40
+ self.sequential = nn.Sequential(*sequence)
41
+
42
+ def forward(self, X):
43
+ X = self.sequential(X)
44
+ return X
45
+
46
+
47
+ class Bottleneck(nn.Module):
48
+ expansion = 4
49
+
50
+ def __init__(self, inplanes, planes, stride=1):
51
+ super().__init__()
52
+
53
+ # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
54
+ self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
55
+ self.bn1 = nn.BatchNorm2d(planes)
56
+
57
+ self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
58
+ self.bn2 = nn.BatchNorm2d(planes)
59
+
60
+ self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
61
+
62
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
63
+ self.bn3 = nn.BatchNorm2d(planes * self.expansion)
64
+
65
+ self.relu = nn.ReLU(inplace=True)
66
+ self.downsample = None
67
+ self.stride = stride
68
+
69
+ if stride > 1 or inplanes != planes * Bottleneck.expansion:
70
+ # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
71
+ self.downsample = nn.Sequential(
72
+ OrderedDict(
73
+ [
74
+ ("-1", nn.AvgPool2d(stride)),
75
+ (
76
+ "0",
77
+ nn.Conv2d(
78
+ inplanes,
79
+ planes * self.expansion,
80
+ 1,
81
+ stride=1,
82
+ bias=False,
83
+ ),
84
+ ),
85
+ ("1", nn.BatchNorm2d(planes * self.expansion)),
86
+ ]
87
+ )
88
+ )
89
+
90
+ def forward(self, x: torch.Tensor):
91
+ identity = x
92
+
93
+ out = self.relu(self.bn1(self.conv1(x)))
94
+ out = self.relu(self.bn2(self.conv2(out)))
95
+ out = self.avgpool(out)
96
+ out = self.bn3(self.conv3(out))
97
+
98
+ if self.downsample is not None:
99
+ identity = self.downsample(x)
100
+
101
+ out += identity
102
+ out = self.relu(out)
103
+ return out
104
+
105
+
106
+ class AttentionPool2d(nn.Module):
107
+ def __init__(
108
+ self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None
109
+ ):
110
+ super().__init__()
111
+ self.positional_embedding = nn.Parameter(
112
+ torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5
113
+ )
114
+ self.k_proj = nn.Linear(embed_dim, embed_dim)
115
+ self.q_proj = nn.Linear(embed_dim, embed_dim)
116
+ self.v_proj = nn.Linear(embed_dim, embed_dim)
117
+ self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
118
+ self.num_heads = num_heads
119
+
120
+ def forward(self, x):
121
+ x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(
122
+ 2, 0, 1
123
+ ) # NCHW -> (HW)NC
124
+ x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
125
+ x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
126
+ x, _ = F.multi_head_attention_forward(
127
+ query=x,
128
+ key=x,
129
+ value=x,
130
+ embed_dim_to_check=x.shape[-1],
131
+ num_heads=self.num_heads,
132
+ q_proj_weight=self.q_proj.weight,
133
+ k_proj_weight=self.k_proj.weight,
134
+ v_proj_weight=self.v_proj.weight,
135
+ in_proj_weight=None,
136
+ in_proj_bias=torch.cat(
137
+ [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]
138
+ ),
139
+ bias_k=None,
140
+ bias_v=None,
141
+ add_zero_attn=False,
142
+ dropout_p=0,
143
+ out_proj_weight=self.c_proj.weight,
144
+ out_proj_bias=self.c_proj.bias,
145
+ use_separate_proj_weight=True,
146
+ training=self.training,
147
+ need_weights=False,
148
+ )
149
+
150
+ return x[0]
151
+
152
+
153
+ class ModifiedResNet(nn.Module):
154
+ """
155
+ A ResNet class that is similar to torchvision's but contains the following changes:
156
+ - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
157
+ - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
158
+ - The final pooling layer is a QKV attention instead of an average pool
159
+ """
160
+
161
+ def __init__(self, layers, output_dim, heads, image_size=224, width=64):
162
+ super().__init__()
163
+ self.output_dim = output_dim
164
+ self.image_size = image_size
165
+
166
+ # the 3-layer stem
167
+ self.conv1 = nn.Conv2d(
168
+ 3, width // 2, kernel_size=3, stride=2, padding=1, bias=False
169
+ )
170
+ self.bn1 = nn.BatchNorm2d(width // 2)
171
+ self.conv2 = nn.Conv2d(
172
+ width // 2, width // 2, kernel_size=3, padding=1, bias=False
173
+ )
174
+ self.bn2 = nn.BatchNorm2d(width // 2)
175
+ self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
176
+ self.bn3 = nn.BatchNorm2d(width)
177
+ self.avgpool = nn.AvgPool2d(2)
178
+ self.relu = nn.ReLU(inplace=True)
179
+
180
+ # residual layers
181
+ self._inplanes = width # this is a *mutable* variable used during construction
182
+ self.layer1 = self._make_layer(width, layers[0])
183
+ self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
184
+ self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
185
+ self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
186
+
187
+ embed_dim = width * 32 # the ResNet feature dimension
188
+ self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
189
+
190
+ self.init_parameters()
191
+
192
+ def _make_layer(self, planes, blocks, stride=1):
193
+ layers = [Bottleneck(self._inplanes, planes, stride)]
194
+
195
+ self._inplanes = planes * Bottleneck.expansion
196
+ for _ in range(1, blocks):
197
+ layers.append(Bottleneck(self._inplanes, planes))
198
+
199
+ return nn.Sequential(*layers)
200
+
201
+ def init_parameters(self):
202
+ if self.attnpool is not None:
203
+ std = self.attnpool.c_proj.in_features**-0.5
204
+ nn.init.normal_(self.attnpool.q_proj.weight, std=std)
205
+ nn.init.normal_(self.attnpool.k_proj.weight, std=std)
206
+ nn.init.normal_(self.attnpool.v_proj.weight, std=std)
207
+ nn.init.normal_(self.attnpool.c_proj.weight, std=std)
208
+
209
+ for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
210
+ for name, param in resnet_block.named_parameters():
211
+ if name.endswith("bn3.weight"):
212
+ nn.init.zeros_(param)
213
+
214
+ def lock(self, unlocked_groups=0, freeze_bn_stats=False):
215
+ assert (
216
+ unlocked_groups == 0
217
+ ), "partial locking not currently supported for this model"
218
+ for param in self.parameters():
219
+ param.requires_grad = False
220
+ if freeze_bn_stats:
221
+ freeze_batch_norm_2d(self)
222
+
223
+ def stem(self, x):
224
+ for conv, bn in [
225
+ (self.conv1, self.bn1),
226
+ (self.conv2, self.bn2),
227
+ (self.conv3, self.bn3),
228
+ ]:
229
+ x = self.relu(bn(conv(x)))
230
+ x = self.avgpool(x)
231
+ return x
232
+
233
+ def forward(self, x):
234
+ x = self.stem(x)
235
+ x = self.layer1(x)
236
+ x = self.layer2(x)
237
+ x = self.layer3(x)
238
+ x = self.layer4(x)
239
+ x = self.attnpool(x)
240
+
241
+ return x
242
+
243
+
244
+ class LayerNorm(nn.LayerNorm):
245
+ """Subclass torch's LayerNorm to handle fp16."""
246
+
247
+ def forward(self, x: torch.Tensor):
248
+ orig_type = x.dtype
249
+ x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
250
+ return x.to(orig_type)
251
+
252
+
253
+ class QuickGELU(nn.Module):
254
+ # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
255
+ def forward(self, x: torch.Tensor):
256
+ return x * torch.sigmoid(1.702 * x)
257
+
258
+
259
+ class ResidualAttentionBlock(nn.Module):
260
+ def __init__(self, d_model: int, n_head: int, act_layer: Callable = nn.GELU):
261
+ super().__init__()
262
+
263
+ self.attn = nn.MultiheadAttention(d_model, n_head)
264
+ self.ln_1 = LayerNorm(d_model)
265
+ self.mlp = nn.Sequential(
266
+ OrderedDict(
267
+ [
268
+ ("c_fc", nn.Linear(d_model, d_model * 4)),
269
+ ("gelu", act_layer()),
270
+ ("c_proj", nn.Linear(d_model * 4, d_model)),
271
+ ]
272
+ )
273
+ )
274
+ self.ln_2 = LayerNorm(d_model)
275
+
276
+ def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
277
+ return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
278
+
279
+ def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
280
+ x = x + self.attention(self.ln_1(x), attn_mask=attn_mask)
281
+ x = x + self.mlp(self.ln_2(x))
282
+ return x
283
+
284
+
285
+ class Transformer(nn.Module):
286
+ def __init__(
287
+ self, width: int, layers: int, heads: int, act_layer: Callable = nn.GELU
288
+ ):
289
+ super().__init__()
290
+ self.width = width
291
+ self.layers = layers
292
+ self.resblocks = nn.ModuleList(
293
+ [
294
+ ResidualAttentionBlock(width, heads, act_layer=act_layer)
295
+ for _ in range(layers)
296
+ ]
297
+ )
298
+
299
+ def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
300
+ for r in self.resblocks:
301
+ x = r(x, attn_mask=attn_mask)
302
+ return x
303
+
304
+
305
+ class VisualTransformer(nn.Module):
306
+ def __init__(
307
+ self,
308
+ image_size: int,
309
+ patch_size: int,
310
+ width: int,
311
+ layers: int,
312
+ heads: int,
313
+ output_dim: int,
314
+ act_layer: Callable = nn.GELU,
315
+ ):
316
+ super().__init__()
317
+ self.image_size = image_size
318
+ self.output_dim = output_dim
319
+ self.conv1 = nn.Conv2d(
320
+ in_channels=3,
321
+ out_channels=width,
322
+ kernel_size=patch_size,
323
+ stride=patch_size,
324
+ bias=False,
325
+ )
326
+
327
+ scale = width**-0.5
328
+ self.class_embedding = nn.Parameter(scale * torch.randn(width))
329
+ self.positional_embedding = nn.Parameter(
330
+ scale * torch.randn((image_size // patch_size) ** 2 + 1, width)
331
+ )
332
+ self.ln_pre = LayerNorm(width)
333
+
334
+ self.text_branch = Transformer(width, layers, heads, act_layer=act_layer)
335
+
336
+ self.ln_post = LayerNorm(width)
337
+ self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
338
+
339
+ def lock(self, unlocked_groups=0, freeze_bn_stats=False):
340
+ assert (
341
+ unlocked_groups == 0
342
+ ), "partial locking not currently supported for this model"
343
+ for param in self.parameters():
344
+ param.requires_grad = False
345
+
346
+ def forward(self, x: torch.Tensor):
347
+ x = self.conv1(x) # shape = [*, width, grid, grid]
348
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
349
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
350
+ x = torch.cat(
351
+ [
352
+ self.class_embedding.to(x.dtype)
353
+ + torch.zeros(
354
+ x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
355
+ ),
356
+ x,
357
+ ],
358
+ dim=1,
359
+ ) # shape = [*, grid ** 2 + 1, width]
360
+ x = x + self.positional_embedding.to(x.dtype)
361
+ x = self.ln_pre(x)
362
+
363
+ x = x.permute(1, 0, 2) # NLD -> LND
364
+ x = self.text_branch(x)
365
+ x = x.permute(1, 0, 2) # LND -> NLD
366
+
367
+ x = self.ln_post(x[:, 0, :])
368
+
369
+ if self.proj is not None:
370
+ x = x @ self.proj
371
+
372
+ return x
373
+
374
+
375
+ @dataclass
376
+ class CLAPVisionCfg:
377
+ layers: Union[Tuple[int, int, int, int], int] = 12
378
+ width: int = 768
379
+ patch_size: int = 16
380
+ image_size: Union[Tuple[int, int], int] = 224
381
+ timm_model_name: str = (
382
+ None # a valid model name overrides layers, width, patch_size
383
+ )
384
+ timm_model_pretrained: bool = (
385
+ False # use (imagenet) pretrained weights for named model
386
+ )
387
+ timm_pool: str = (
388
+ "avg" # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
389
+ )
390
+ timm_proj: str = (
391
+ "linear" # linear projection for timm model output ('linear', 'mlp', '')
392
+ )
393
+
394
+
395
+ # Audio Config Class
396
+ @dataclass
397
+ class CLAPAudioCfp:
398
+ model_type: str = "PANN"
399
+ model_name: str = "Cnn14"
400
+ sample_rate: int = 48000
401
+ # Param
402
+ audio_length: int = 1024
403
+ window_size: int = 1024
404
+ hop_size: int = 1024
405
+ fmin: int = 50
406
+ fmax: int = 14000
407
+ class_num: int = 527
408
+ mel_bins: int = 64
409
+ clip_samples: int = 480000
410
+
411
+
412
+ @dataclass
413
+ class CLAPTextCfg:
414
+ context_length: int
415
+ vocab_size: int
416
+ width: int
417
+ heads: int
418
+ layers: int
419
+ model_type: str
420
+
421
+
422
+ class CLAP(nn.Module):
423
+ def __init__(
424
+ self,
425
+ embed_dim: int,
426
+ audio_cfg: CLAPAudioCfp,
427
+ text_cfg: CLAPTextCfg,
428
+ quick_gelu: bool = False,
429
+ enable_fusion: bool = False,
430
+ fusion_type: str = "None",
431
+ joint_embed_shape: int = 512,
432
+ mlp_act: str = "relu",
433
+ ):
434
+ super().__init__()
435
+ if isinstance(audio_cfg, dict):
436
+ audio_cfg = CLAPAudioCfp(**audio_cfg)
437
+ if isinstance(text_cfg, dict):
438
+ text_cfg = CLAPTextCfg(**text_cfg)
439
+
440
+ self.audio_cfg = audio_cfg
441
+ self.text_cfg = text_cfg
442
+ self.enable_fusion = enable_fusion
443
+ self.fusion_type = fusion_type
444
+ self.joint_embed_shape = joint_embed_shape
445
+ self.mlp_act = mlp_act
446
+
447
+ self.context_length = text_cfg.context_length
448
+
449
+ # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
450
+ # memory efficient in recent PyTorch releases (>= 1.10).
451
+ # NOTE: timm models always use native GELU regardless of quick_gelu flag.
452
+ act_layer = QuickGELU if quick_gelu else nn.GELU
453
+
454
+ if mlp_act == "relu":
455
+ mlp_act_layer = nn.ReLU()
456
+ elif mlp_act == "gelu":
457
+ mlp_act_layer = nn.GELU()
458
+ else:
459
+ raise NotImplementedError
460
+
461
+ # audio branch
462
+ # audio branch parameters
463
+ if audio_cfg.model_type == "PANN":
464
+ self.audio_branch = create_pann_model(audio_cfg, enable_fusion, fusion_type)
465
+ elif audio_cfg.model_type == "HTSAT":
466
+ self.audio_branch = create_htsat_model(
467
+ audio_cfg, enable_fusion, fusion_type
468
+ )
469
+ else:
470
+ logging.error(f"Model config for {audio_cfg.model_type} not found")
471
+ raise RuntimeError(f"Model config for {audio_cfg.model_type} not found.")
472
+
473
+ # text branch
474
+ # text branch parameters
475
+ if text_cfg.model_type == "transformer":
476
+ self.text_branch = Transformer(
477
+ width=text_cfg.width,
478
+ layers=text_cfg.layers,
479
+ heads=text_cfg.heads,
480
+ act_layer=act_layer,
481
+ )
482
+ self.vocab_size = text_cfg.vocab_size
483
+ self.token_embedding = nn.Embedding(text_cfg.vocab_size, text_cfg.width)
484
+ self.positional_embedding = nn.Parameter(
485
+ torch.empty(self.context_length, text_cfg.width)
486
+ )
487
+ self.ln_final = LayerNorm(text_cfg.width)
488
+ self.text_transform = MLPLayers(
489
+ units=[
490
+ self.joint_embed_shape,
491
+ self.joint_embed_shape,
492
+ self.joint_embed_shape,
493
+ ],
494
+ dropout=0.1,
495
+ )
496
+ self.text_projection = nn.Sequential(
497
+ nn.Linear(text_cfg.width, self.joint_embed_shape),
498
+ mlp_act_layer,
499
+ nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
500
+ )
501
+ elif text_cfg.model_type == "bert":
502
+ self.text_branch = BertModel.from_pretrained("bert-base-uncased")
503
+ self.text_transform = MLPLayers(
504
+ units=[
505
+ self.joint_embed_shape,
506
+ self.joint_embed_shape,
507
+ self.joint_embed_shape,
508
+ ],
509
+ dropout=0.1,
510
+ )
511
+ self.text_projection = nn.Sequential(
512
+ nn.Linear(768, self.joint_embed_shape),
513
+ mlp_act_layer,
514
+ nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
515
+ )
516
+ elif text_cfg.model_type == "roberta":
517
+ self.text_branch = RobertaModel.from_pretrained("roberta-base")
518
+ self.text_transform = MLPLayers(
519
+ units=[
520
+ self.joint_embed_shape,
521
+ self.joint_embed_shape,
522
+ self.joint_embed_shape,
523
+ ],
524
+ dropout=0.1,
525
+ )
526
+ self.text_projection = nn.Sequential(
527
+ nn.Linear(768, self.joint_embed_shape),
528
+ mlp_act_layer,
529
+ nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
530
+ )
531
+ elif text_cfg.model_type == "bart":
532
+ self.text_branch = BartModel.from_pretrained("facebook/bart-base")
533
+ self.text_transform = MLPLayers(
534
+ units=[
535
+ self.joint_embed_shape,
536
+ self.joint_embed_shape,
537
+ self.joint_embed_shape,
538
+ ],
539
+ dropout=0.1,
540
+ )
541
+ self.text_projection = nn.Sequential(
542
+ nn.Linear(768, self.joint_embed_shape),
543
+ mlp_act_layer,
544
+ nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
545
+ )
546
+ else:
547
+ logging.error(f"Model config for {text_cfg.model_type} not found")
548
+ raise RuntimeError(f"Model config for {text_cfg.model_type} not found.")
549
+ self.text_branch_type = text_cfg.model_type
550
+ # text branch parameters
551
+
552
+ # audio branch parameters
553
+ self.audio_transform = MLPLayers(
554
+ units=[
555
+ self.joint_embed_shape,
556
+ self.joint_embed_shape,
557
+ self.joint_embed_shape,
558
+ ],
559
+ dropout=0.1,
560
+ )
561
+
562
+ # below here is text branch parameters
563
+
564
+ # ============================================================================================================
565
+ self.audio_projection = nn.Sequential(
566
+ nn.Linear(embed_dim, self.joint_embed_shape),
567
+ mlp_act_layer,
568
+ nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
569
+ )
570
+
571
+ self.logit_scale_a = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
572
+ self.logit_scale_t = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
573
+ self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False)
574
+
575
+ self.init_text_branch_parameters()
576
+
577
+ def init_text_branch_parameters(self):
578
+ if self.text_branch_type == "transformer":
579
+ nn.init.normal_(self.token_embedding.weight, std=0.02)
580
+ nn.init.normal_(self.positional_embedding, std=0.01)
581
+ proj_std = (self.text_branch.width**-0.5) * (
582
+ (2 * self.text_branch.layers) ** -0.5
583
+ )
584
+ attn_std = self.text_branch.width**-0.5
585
+ fc_std = (2 * self.text_branch.width) ** -0.5
586
+ for block in self.text_branch.resblocks:
587
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
588
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
589
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
590
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
591
+ if self.text_branch_type == "bert" or self.text_branch_type == "roberta":
592
+ width = self.text_branch.embeddings.word_embeddings.weight.shape[-1]
593
+ elif self.text_branch_type == "bart":
594
+ width = self.text_branch.shared.weight.shape[-1]
595
+ else:
596
+ width = self.text_branch.width
597
+ nn.init.constant_(self.logit_scale_a, np.log(1 / 0.07))
598
+ nn.init.constant_(self.logit_scale_t, np.log(1 / 0.07))
599
+
600
+ # deprecated
601
+ # if hasattr(self.visual, 'init_parameters'):
602
+ # self.visual.init_parameters()
603
+
604
+ # if self.text_projection is not None:
605
+ # nn.init.normal_(self.text_projection, std=width**-0.5)
606
+
607
+ def build_attention_mask(self):
608
+ # lazily create causal attention mask, with full attention between the vision tokens
609
+ # pytorch uses additive attention mask; fill with -inf
610
+ mask = torch.empty(self.context_length, self.context_length)
611
+ mask.fill_(float("-inf"))
612
+ mask.triu_(1) # zero out the lower diagonal
613
+ return mask
614
+
615
+ def encode_audio(self, audio, device):
616
+ return self.audio_branch(
617
+ audio, mixup_lambda=None, device=device
618
+ ) # mix lambda needs to add
619
+
620
+ # def list_of_dict_of_tensor2dict_of_tensor(self, x, device):
621
+ # tmp = {}
622
+ # for k in x[0].keys():
623
+ # tmp[k] = []
624
+ # for i in range(len(x)):
625
+ # tmp[k].append(x[i][k][:77])
626
+ # for k in x[0].keys():
627
+ # tmp[k] = torch.tensor(tmp[k]).to(device=device, non_blocking=True)
628
+ # return tmp
629
+
630
+ def encode_text(self, text, device):
631
+ if self.text_branch_type == "transformer":
632
+ text = text.to(device=device, non_blocking=True)
633
+ x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
634
+
635
+ x = x + self.positional_embedding
636
+ x = x.permute(1, 0, 2) # NLD -> LND
637
+ x = self.text_branch(x, attn_mask=self.attn_mask)
638
+ x = x.permute(1, 0, 2) # LND -> NLD
639
+ x = self.ln_final(x)
640
+
641
+ # x.shape = [batch_size, n_ctx, transformer.width]
642
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
643
+ x = self.text_projection(x[torch.arange(x.shape[0]), text.argmax(dim=-1)])
644
+ elif self.text_branch_type == "bert":
645
+ # text = self.list_of_dict_of_tensor2dict_of_tensor(text, device)
646
+ # text = BatchEncoding(text)
647
+ x = self.text_branch(
648
+ input_ids=text["input_ids"].to(device=device, non_blocking=True),
649
+ attention_mask=text["attention_mask"].to(
650
+ device=device, non_blocking=True
651
+ ),
652
+ token_type_ids=text["token_type_ids"].to(
653
+ device=device, non_blocking=True
654
+ ),
655
+ )["pooler_output"]
656
+ x = self.text_projection(x)
657
+ elif self.text_branch_type == "roberta":
658
+ x = self.text_branch(
659
+ input_ids=text["input_ids"].to(device=device, non_blocking=True),
660
+ attention_mask=text["attention_mask"].to(
661
+ device=device, non_blocking=True
662
+ ),
663
+ )["pooler_output"]
664
+ x = self.text_projection(x)
665
+ elif self.text_branch_type == "bart":
666
+ x = torch.mean(
667
+ self.text_branch(
668
+ input_ids=text["input_ids"].to(device=device, non_blocking=True),
669
+ attention_mask=text["attention_mask"].to(
670
+ device=device, non_blocking=True
671
+ ),
672
+ )["encoder_last_hidden_state"],
673
+ axis=1,
674
+ )
675
+ x = self.text_projection(x)
676
+ else:
677
+ logging.error(f"Model type {self.text_branch_type} not found")
678
+ raise RuntimeError(f"Model type {self.text_branch_type} not found.")
679
+ return x
680
+
681
+ def forward(self, audio, text, device=None):
682
+ """Forward audio and text into the CLAP
683
+
684
+ Parameters
685
+ ----------
686
+ audio: torch.Tensor (batch_size, audio_length)
687
+ the time-domain audio input / the batch of mel_spec and longer list.
688
+ text: torch.Tensor () // need to add
689
+ the text token input
690
+ """
691
+ if device is None:
692
+ if audio is not None:
693
+ device = audio.device
694
+ elif text is not None:
695
+ device = text.device
696
+ if audio is None and text is None:
697
+ # a hack to get the logit scale
698
+ return self.logit_scale_a.exp(), self.logit_scale_t.exp()
699
+ elif audio is None:
700
+ return self.encode_text(text, device=device)
701
+ elif text is None:
702
+ return self.audio_projection(
703
+ self.encode_audio(audio, device=device)["embedding"]
704
+ )
705
+ audio_features = self.audio_projection(
706
+ self.encode_audio(audio, device=device)["embedding"]
707
+ )
708
+ audio_features = F.normalize(audio_features, dim=-1)
709
+
710
+ text_features = self.encode_text(text, device=device)
711
+ # print("text_features", text_features)
712
+ # print("text_features.shape", text_features.shape)
713
+ # print("text_features.type", type(text_features))
714
+ text_features = F.normalize(text_features, dim=-1)
715
+
716
+ audio_features_mlp = self.audio_transform(audio_features)
717
+ text_features_mlp = self.text_transform(text_features)
718
+ # Four outputs: audio features (basic & MLP), text features (basic & MLP)
719
+ return (
720
+ audio_features,
721
+ text_features,
722
+ audio_features_mlp,
723
+ text_features_mlp,
724
+ self.logit_scale_a.exp(),
725
+ self.logit_scale_t.exp(),
726
+ )
727
+
728
+ def get_logit_scale(self):
729
+ return self.logit_scale_a.exp(), self.logit_scale_t.exp()
730
+
731
+ def get_text_embedding(self, data):
732
+ """Get the text embedding from the model
733
+
734
+ Parameters
735
+ ----------
736
+ data: torch.Tensor
737
+ a tensor of text embedding
738
+
739
+ Returns
740
+ ----------
741
+ text_embed: torch.Tensor
742
+ a tensor of text_embeds (N, D)
743
+
744
+ """
745
+ device = next(self.parameters()).device
746
+ for k in data:
747
+ data[k] = data[k].to(device)
748
+ if(len(data[k].size()) < 2):
749
+ data[k] = data[k].unsqueeze(0)
750
+ text_embeds = self.encode_text(data, device=device)
751
+ text_embeds = F.normalize(text_embeds, dim=-1)
752
+
753
+ return text_embeds
754
+
755
+ def get_audio_embedding(self, data):
756
+ """Get the audio embedding from the model
757
+
758
+ Parameters
759
+ ----------
760
+ data: a list of dict
761
+ the audio input dict list from 'get_audio_feature' method
762
+
763
+ Returns
764
+ ----------
765
+ audio_embed: torch.Tensor
766
+ a tensor of audio_embeds (N, D)
767
+
768
+ """
769
+ device = next(self.parameters()).device
770
+ input_dict = {}
771
+ keys = data[0].keys()
772
+ for k in keys:
773
+ input_dict[k] = torch.cat([d[k].unsqueeze(0) for d in data], dim=0).to(
774
+ device
775
+ )
776
+
777
+ audio_embeds = self.audio_projection(
778
+ self.encode_audio(input_dict, device=device)["embedding"]
779
+ )
780
+ audio_embeds = F.normalize(audio_embeds, dim=-1)
781
+
782
+ return audio_embeds
783
+
784
+ def audio_infer(self, audio, hopsize=None, device=None):
785
+ """Forward one audio and produce the audio embedding
786
+
787
+ Parameters
788
+ ----------
789
+ audio: (audio_length)
790
+ the time-domain audio input, notice that it must be only one input
791
+ hopsize: int
792
+ the overlap hopsize as the sliding window
793
+
794
+ Returns
795
+ ----------
796
+ output_dict: {
797
+ key: [n, (embedding_shape)] if "HTS-AT"
798
+ or
799
+ key: [(embedding_shape)] if "PANN"
800
+ }
801
+ the list of key values of the audio branch
802
+
803
+ """
804
+
805
+ assert not self.training, "the inference mode must be run at eval stage"
806
+ output_dict = {}
807
+ # PANN
808
+ if self.audio_cfg.model_type == "PANN":
809
+ audio_input = audio.unsqueeze(dim=0)
810
+ output_dict[key] = self.encode_audio(audio_input, device=device)[
811
+ key
812
+ ].squeeze(dim=0)
813
+ elif self.audio_cfg.model_type == "HTSAT":
814
+ # repeat
815
+ audio_len = len(audio)
816
+ k = self.audio_cfg.clip_samples // audio_len
817
+ if k > 1:
818
+ audio = audio.repeat(k)
819
+ audio_len = len(audio)
820
+
821
+ if hopsize is None:
822
+ hopsize = min(hopsize, audio_len)
823
+
824
+ if audio_len > self.audio_cfg.clip_samples:
825
+ audio_input = [
826
+ audio[pos : pos + self.audio_cfg.clip_samples].clone()
827
+ for pos in range(
828
+ 0, audio_len - self.audio_cfg.clip_samples, hopsize
829
+ )
830
+ ]
831
+ audio_input.append(audio[-self.audio_cfg.clip_samples :].clone())
832
+ audio_input = torch.stack(audio_input)
833
+ output_dict[key] = self.encode_audio(audio_input, device=device)[key]
834
+ else:
835
+ audio_input = audio.unsqueeze(dim=0)
836
+ output_dict[key] = self.encode_audio(audio_input, device=device)[
837
+ key
838
+ ].squeeze(dim=0)
839
+
840
+ return output_dict
841
+
842
+
843
+ def convert_weights_to_fp16(model: nn.Module):
844
+ """Convert applicable model parameters to fp16"""
845
+
846
+ def _convert_weights_to_fp16(l):
847
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
848
+ l.weight.data = l.weight.data.half()
849
+ if l.bias is not None:
850
+ l.bias.data = l.bias.data.half()
851
+
852
+ if isinstance(l, nn.MultiheadAttention):
853
+ for attr in [
854
+ *[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
855
+ "in_proj_bias",
856
+ "bias_k",
857
+ "bias_v",
858
+ ]:
859
+ tensor = getattr(l, attr)
860
+ if tensor is not None:
861
+ tensor.data = tensor.data.half()
862
+
863
+ for name in ["text_projection", "proj"]:
864
+ if hasattr(l, name):
865
+ attr = getattr(l, name)
866
+ if attr is not None:
867
+ attr.data = attr.data.half()
868
+
869
+ model.apply(_convert_weights_to_fp16)
870
+
871
+
872
+ # Ignore the state dict of the vision part
873
+ def build_model_from_openai_state_dict(
874
+ state_dict: dict, model_cfg, enable_fusion: bool = False, fusion_type: str = "None"
875
+ ):
876
+
877
+ embed_dim = model_cfg["embed_dim"]
878
+ audio_cfg = model_cfg["audio_cfg"]
879
+ text_cfg = model_cfg["text_cfg"]
880
+ context_length = state_dict["positional_embedding"].shape[0]
881
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
882
+ transformer_width = state_dict["ln_final.weight"].shape[0]
883
+ transformer_heads = transformer_width // 64
884
+ transformer_layers = len(
885
+ set(
886
+ k.split(".")[2]
887
+ for k in state_dict
888
+ if k.startswith(f"transformer.resblocks")
889
+ )
890
+ )
891
+
892
+ audio_cfg = CLAPAudioCfp(**audio_cfg)
893
+ text_cfg = CLAPTextCfg(**text_cfg)
894
+
895
+ model = CLAP(
896
+ embed_dim,
897
+ audio_cfg=audio_cfg,
898
+ text_cfg=text_cfg,
899
+ quick_gelu=True, # OpenAI models were trained with QuickGELU
900
+ enable_fusion=enable_fusion,
901
+ fusion_type=fusion_type,
902
+ )
903
+ state_dict["logit_scale_a"] = state_dict["logit_scale"]
904
+ state_dict["logit_scale_t"] = state_dict["logit_scale"]
905
+ pop_keys = list(state_dict.keys())[::]
906
+ # pop the visual branch saved weights
907
+ for key in pop_keys:
908
+ if key.startswith("visual."):
909
+ state_dict.pop(key, None)
910
+
911
+ for key in ["logit_scale", "input_resolution", "context_length", "vocab_size"]:
912
+ state_dict.pop(key, None)
913
+
914
+ # not use fp16
915
+ # convert_weights_to_fp16(model)
916
+ model.load_state_dict(state_dict, strict=False)
917
+ return model.eval()
918
+
919
+
920
+ def trace_model(model, batch_size=256, device=torch.device("cpu")):
921
+ model.eval()
922
+ audio_length = model.audio_cfg.audio_length
923
+ example_audio = torch.ones((batch_size, audio_length), device=device)
924
+ example_text = torch.zeros(
925
+ (batch_size, model.context_length), dtype=torch.int, device=device
926
+ )
927
+ model = torch.jit.trace_module(
928
+ model,
929
+ inputs=dict(
930
+ forward=(example_audio, example_text),
931
+ encode_text=(example_text,),
932
+ encode_image=(example_audio,),
933
+ ),
934
+ )
935
+ model.audio_cfg.audio_length = audio_length # Question: what does this do?
936
+ return model
audioldm/clap/open_clip/model_configs/HTSAT-base.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "HTSAT",
14
+ "model_name": "base"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
audioldm/clap/open_clip/model_configs/HTSAT-large.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 2048,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "HTSAT",
14
+ "model_name": "large"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
audioldm/clap/open_clip/model_configs/HTSAT-tiny-win-1536.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1536,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "HTSAT",
14
+ "model_name": "tiny"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
audioldm/clap/open_clip/model_configs/HTSAT-tiny.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "HTSAT",
14
+ "model_name": "tiny"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
audioldm/clap/open_clip/model_configs/PANN-10.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn10"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
audioldm/clap/open_clip/model_configs/PANN-14-fmax-18k.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 2048,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 18000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn14"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
audioldm/clap/open_clip/model_configs/PANN-14-fmax-8k-20s.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 2048,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 960000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 360,
10
+ "fmin": 50,
11
+ "fmax": 8000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn14"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
audioldm/clap/open_clip/model_configs/PANN-14-tiny-transformer.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 2048,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn14"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 4
22
+ }
23
+ }
audioldm/clap/open_clip/model_configs/PANN-14-win-1536.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 2048,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1536,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn14"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
audioldm/clap/open_clip/model_configs/PANN-14.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 2048,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn14"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
audioldm/clap/open_clip/model_configs/PANN-6.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn6"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
audioldm/clap/open_clip/model_configs/RN101-quickgelu.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "quick_gelu": true,
4
+ "vision_cfg": {
5
+ "image_size": 224,
6
+ "layers": [
7
+ 3,
8
+ 4,
9
+ 23,
10
+ 3
11
+ ],
12
+ "width": 64,
13
+ "patch_size": null
14
+ },
15
+ "text_cfg": {
16
+ "context_length": 77,
17
+ "vocab_size": 49408,
18
+ "width": 512,
19
+ "heads": 8,
20
+ "layers": 12
21
+ }
22
+ }
audioldm/clap/open_clip/model_configs/RN101.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": [
6
+ 3,
7
+ 4,
8
+ 23,
9
+ 3
10
+ ],
11
+ "width": 64,
12
+ "patch_size": null
13
+ },
14
+ "text_cfg": {
15
+ "context_length": 77,
16
+ "vocab_size": 49408,
17
+ "width": 512,
18
+ "heads": 8,
19
+ "layers": 12
20
+ }
21
+ }