Spaces:
Running
on
A100
Running
on
A100
Merge pull request #5 from LightricksResearch/safetensors-ckpts
Browse files- scripts/to_safetensors.py +109 -0
- xora/examples/image_to_video.py +104 -80
- xora/examples/text_to_video.py +90 -70
- xora/models/autoencoders/causal_video_autoencoder.py +22 -2
scripts/to_safetensors.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Any, Dict
|
4 |
+
import safetensors.torch
|
5 |
+
import torch
|
6 |
+
import json
|
7 |
+
import shutil
|
8 |
+
|
9 |
+
|
10 |
+
def load_text_encoder(index_path: Path) -> Dict:
|
11 |
+
with open(index_path, 'r') as f:
|
12 |
+
index: Dict = json.load(f)
|
13 |
+
|
14 |
+
loaded_tensors = {}
|
15 |
+
for part_file in set(index.get("weight_map", {}).values()):
|
16 |
+
tensors = safetensors.torch.load_file(index_path.parent / part_file, device='cpu')
|
17 |
+
for tensor_name in tensors:
|
18 |
+
loaded_tensors[tensor_name] = tensors[tensor_name]
|
19 |
+
|
20 |
+
return loaded_tensors
|
21 |
+
|
22 |
+
|
23 |
+
def convert_unet(unet: Dict, add_prefix=True) -> Dict:
|
24 |
+
if add_prefix:
|
25 |
+
return {"model.diffusion_model." + key: value for key, value in unet.items()}
|
26 |
+
return unet
|
27 |
+
|
28 |
+
|
29 |
+
def convert_vae(vae_path: Path, add_prefix=True) -> Dict:
|
30 |
+
state_dict = torch.load(vae_path / "autoencoder.pth", weights_only=True)
|
31 |
+
stats_path = vae_path / "per_channel_statistics.json"
|
32 |
+
if stats_path.exists():
|
33 |
+
with open(stats_path, 'r') as f:
|
34 |
+
data = json.load(f)
|
35 |
+
transposed_data = list(zip(*data["data"]))
|
36 |
+
data_dict = {
|
37 |
+
f"{'vae.' if add_prefix else ''}per_channel_statistics.{col}": torch.tensor(vals)
|
38 |
+
for col, vals in zip(data["columns"], transposed_data)
|
39 |
+
}
|
40 |
+
else:
|
41 |
+
data_dict = {}
|
42 |
+
|
43 |
+
result = {("vae." if add_prefix else "") + key: value for key, value in state_dict.items()}
|
44 |
+
result.update(data_dict)
|
45 |
+
return result
|
46 |
+
|
47 |
+
|
48 |
+
def convert_encoder(encoder: Dict) -> Dict:
|
49 |
+
return {"text_encoders.t5xxl.transformer." + key: value for key, value in encoder.items()}
|
50 |
+
|
51 |
+
|
52 |
+
def save_config(config_src: str, config_dst: str):
|
53 |
+
shutil.copy(config_src, config_dst)
|
54 |
+
|
55 |
+
|
56 |
+
def load_vae_config(vae_path: Path) -> str:
|
57 |
+
config_path = vae_path / "config.json"
|
58 |
+
if not config_path.exists():
|
59 |
+
raise FileNotFoundError(f"VAE config file {config_path} not found.")
|
60 |
+
return str(config_path)
|
61 |
+
|
62 |
+
|
63 |
+
def main(unet_path: str, vae_path: str, out_path: str, mode: str,
|
64 |
+
unet_config_path: str = None, scheduler_config_path: str = None) -> None:
|
65 |
+
unet = convert_unet(torch.load(unet_path, weights_only=True), add_prefix=(mode == 'single'))
|
66 |
+
|
67 |
+
# Load VAE from directory and config
|
68 |
+
vae = convert_vae(Path(vae_path), add_prefix=(mode == 'single'))
|
69 |
+
vae_config_path = load_vae_config(Path(vae_path))
|
70 |
+
|
71 |
+
if mode == 'single':
|
72 |
+
result = {**unet, **vae}
|
73 |
+
safetensors.torch.save_file(result, out_path)
|
74 |
+
elif mode == 'separate':
|
75 |
+
# Create directories for unet, vae, and scheduler
|
76 |
+
unet_dir = Path(out_path) / 'unet'
|
77 |
+
vae_dir = Path(out_path) / 'vae'
|
78 |
+
scheduler_dir = Path(out_path) / 'scheduler'
|
79 |
+
|
80 |
+
unet_dir.mkdir(parents=True, exist_ok=True)
|
81 |
+
vae_dir.mkdir(parents=True, exist_ok=True)
|
82 |
+
scheduler_dir.mkdir(parents=True, exist_ok=True)
|
83 |
+
|
84 |
+
# Save unet and vae safetensors with the name diffusion_pytorch_model.safetensors
|
85 |
+
safetensors.torch.save_file(unet, unet_dir / 'diffusion_pytorch_model.safetensors')
|
86 |
+
safetensors.torch.save_file(vae, vae_dir / 'diffusion_pytorch_model.safetensors')
|
87 |
+
|
88 |
+
# Save config files for unet, vae, and scheduler
|
89 |
+
if unet_config_path:
|
90 |
+
save_config(unet_config_path, unet_dir / 'config.json')
|
91 |
+
if vae_config_path:
|
92 |
+
save_config(vae_config_path, vae_dir / 'config.json')
|
93 |
+
if scheduler_config_path:
|
94 |
+
save_config(scheduler_config_path, scheduler_dir / 'scheduler_config.json')
|
95 |
+
|
96 |
+
|
97 |
+
if __name__ == '__main__':
|
98 |
+
parser = argparse.ArgumentParser()
|
99 |
+
parser.add_argument('--unet_path', '-u', type=str, default='unet/ema-002.pt')
|
100 |
+
parser.add_argument('--vae_path', '-v', type=str, default='vae/')
|
101 |
+
parser.add_argument('--out_path', '-o', type=str, default='xora.safetensors')
|
102 |
+
parser.add_argument('--mode', '-m', type=str, choices=['single', 'separate'], default='single',
|
103 |
+
help="Choose 'single' for the original behavior, 'separate' to save unet and vae separately.")
|
104 |
+
parser.add_argument('--unet_config_path', type=str, help="Path to the UNet config file (for separate mode)")
|
105 |
+
parser.add_argument('--scheduler_config_path', type=str,
|
106 |
+
help="Path to the Scheduler config file (for separate mode)")
|
107 |
+
|
108 |
+
args = parser.parse_args()
|
109 |
+
main(**args.__dict__)
|
xora/examples/image_to_video.py
CHANGED
@@ -5,83 +5,107 @@ from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
|
7 |
from pathlib import Path
|
8 |
-
from transformers import T5EncoderModel
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
#
|
59 |
-
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
height=
|
79 |
-
width=
|
80 |
-
num_frames=
|
81 |
-
frame_rate=
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
)
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
|
7 |
from pathlib import Path
|
8 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
9 |
+
import safetensors.torch
|
10 |
+
import json
|
11 |
+
import argparse
|
12 |
+
|
13 |
+
def load_vae(vae_dir):
|
14 |
+
vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors"
|
15 |
+
vae_config_path = vae_dir / "config.json"
|
16 |
+
with open(vae_config_path, 'r') as f:
|
17 |
+
vae_config = json.load(f)
|
18 |
+
vae = CausalVideoAutoencoder.from_config(vae_config)
|
19 |
+
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
|
20 |
+
vae.load_state_dict(vae_state_dict)
|
21 |
+
return vae.cuda().to(torch.bfloat16)
|
22 |
+
|
23 |
+
def load_unet(unet_dir):
|
24 |
+
unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors"
|
25 |
+
unet_config_path = unet_dir / "config.json"
|
26 |
+
transformer_config = Transformer3DModel.load_config(unet_config_path)
|
27 |
+
transformer = Transformer3DModel.from_config(transformer_config)
|
28 |
+
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
|
29 |
+
transformer.load_state_dict(unet_state_dict, strict=True)
|
30 |
+
return transformer.cuda()
|
31 |
+
|
32 |
+
def load_scheduler(scheduler_dir):
|
33 |
+
scheduler_config_path = scheduler_dir / "scheduler_config.json"
|
34 |
+
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
35 |
+
return RectifiedFlowScheduler.from_config(scheduler_config)
|
36 |
+
|
37 |
+
def main():
|
38 |
+
# Parse command line arguments
|
39 |
+
parser = argparse.ArgumentParser(description='Load models from separate directories')
|
40 |
+
parser.add_argument('--separate_dir', type=str, required=True, help='Path to the directory containing unet, vae, and scheduler subdirectories')
|
41 |
+
args = parser.parse_args()
|
42 |
+
|
43 |
+
# Paths for the separate mode directories
|
44 |
+
separate_dir = Path(args.separate_dir)
|
45 |
+
unet_dir = separate_dir / 'unet'
|
46 |
+
vae_dir = separate_dir / 'vae'
|
47 |
+
scheduler_dir = separate_dir / 'scheduler'
|
48 |
+
|
49 |
+
# Load models
|
50 |
+
vae = load_vae(vae_dir)
|
51 |
+
unet = load_unet(unet_dir)
|
52 |
+
scheduler = load_scheduler(scheduler_dir)
|
53 |
+
|
54 |
+
# Patchifier (remains the same)
|
55 |
+
patchifier = SymmetricPatchifier(patch_size=1)
|
56 |
+
|
57 |
+
# text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to("cuda")
|
58 |
+
# tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
|
59 |
+
|
60 |
+
# Use submodels for the pipeline
|
61 |
+
submodel_dict = {
|
62 |
+
"transformer": unet, # using unet for transformer
|
63 |
+
"patchifier": patchifier,
|
64 |
+
"text_encoder": None,
|
65 |
+
"tokenizer": None,
|
66 |
+
"scheduler": scheduler,
|
67 |
+
"vae": vae,
|
68 |
+
}
|
69 |
+
|
70 |
+
model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS"
|
71 |
+
pipeline = VideoPixArtAlphaPipeline(
|
72 |
+
**submodel_dict
|
73 |
+
).to("cuda")
|
74 |
+
|
75 |
+
num_inference_steps = 20
|
76 |
+
num_images_per_prompt = 1
|
77 |
+
guidance_scale = 3
|
78 |
+
height = 512
|
79 |
+
width = 768
|
80 |
+
num_frames = 57
|
81 |
+
frame_rate = 25
|
82 |
+
|
83 |
+
# Sample input stays the same
|
84 |
+
sample = torch.load("/opt/sample_media.pt")
|
85 |
+
for key, item in sample.items():
|
86 |
+
if item is not None:
|
87 |
+
sample[key] = item.cuda()
|
88 |
+
|
89 |
+
# media_items = torch.load("/opt/sample_media.pt")
|
90 |
+
|
91 |
+
# Generate images (video frames)
|
92 |
+
images = pipeline(
|
93 |
+
num_inference_steps=num_inference_steps,
|
94 |
+
num_images_per_prompt=num_images_per_prompt,
|
95 |
+
guidance_scale=guidance_scale,
|
96 |
+
generator=None,
|
97 |
+
output_type="pt",
|
98 |
+
callback_on_step_end=None,
|
99 |
+
height=height,
|
100 |
+
width=width,
|
101 |
+
num_frames=num_frames,
|
102 |
+
frame_rate=frame_rate,
|
103 |
+
**sample,
|
104 |
+
is_video=True,
|
105 |
+
vae_per_channel_normalize=True,
|
106 |
+
).images
|
107 |
+
|
108 |
+
print("Generated video frames.")
|
109 |
+
|
110 |
+
if __name__ == "__main__":
|
111 |
+
main()
|
xora/examples/text_to_video.py
CHANGED
@@ -5,84 +5,104 @@ from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
|
7 |
from pathlib import Path
|
8 |
-
from transformers import T5EncoderModel
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
).cuda()
|
20 |
-
transformer_config_path = Path("/opt/txt2img/txt2img/config/transformer3d/xora_v1.2-L.json")
|
21 |
-
transformer_config = Transformer3DModel.load_config(transformer_config_path)
|
22 |
-
transformer = Transformer3DModel.from_config(transformer_config)
|
23 |
-
transformer_local_path = Path("/opt/models/logs/v1.2-vae-mf-medHR-mr-cvae-nl/ckpt/01760000/model.pt")
|
24 |
-
transformer_ckpt_state_dict = torch.load(transformer_local_path)
|
25 |
-
transformer.load_state_dict(transformer_ckpt_state_dict, True)
|
26 |
-
transformer = transformer.cuda()
|
27 |
-
unet = transformer
|
28 |
-
scheduler_config_path = Path("/opt/txt2img/txt2img/config/scheduler/RF_SD3_shifted.json")
|
29 |
-
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
30 |
-
scheduler = RectifiedFlowScheduler.from_config(scheduler_config)
|
31 |
-
patchifier = SymmetricPatchifier(patch_size=1)
|
32 |
-
# text_encoder = T5EncoderModel.from_pretrained("t5-v1_1-xxl")
|
33 |
|
34 |
-
|
35 |
-
"
|
36 |
-
|
37 |
-
|
38 |
-
"text_encoder": None,
|
39 |
-
"scheduler": scheduler,
|
40 |
-
"vae": vae,
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
)
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
width=768
|
56 |
-
num_frames=57
|
57 |
-
frame_rate=25
|
58 |
-
# sample = {
|
59 |
-
# "prompt": "A cat", # (B, L, E)
|
60 |
-
# 'prompt_attention_mask': None, # (B , L)
|
61 |
-
# 'negative_prompt': "Ugly deformed",
|
62 |
-
# 'negative_prompt_attention_mask': None # (B , L)
|
63 |
-
# }
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
if item is not None:
|
68 |
-
item = item.cuda()
|
69 |
|
|
|
|
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
num_inference_steps=num_inference_steps,
|
74 |
-
num_images_per_prompt=num_images_per_prompt,
|
75 |
-
guidance_scale=guidance_scale,
|
76 |
-
generator=None,
|
77 |
-
output_type="pt",
|
78 |
-
callback_on_step_end=None,
|
79 |
-
height=height,
|
80 |
-
width=width,
|
81 |
-
num_frames=num_frames,
|
82 |
-
frame_rate=frame_rate,
|
83 |
-
**sample,
|
84 |
-
is_video=True,
|
85 |
-
vae_per_channel_normalize=True,
|
86 |
-
).images
|
87 |
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
|
7 |
from pathlib import Path
|
8 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
9 |
+
import safetensors.torch
|
10 |
+
import json
|
11 |
+
import argparse
|
12 |
|
13 |
+
def load_vae(vae_dir):
|
14 |
+
vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors"
|
15 |
+
vae_config_path = vae_dir / "config.json"
|
16 |
+
with open(vae_config_path, 'r') as f:
|
17 |
+
vae_config = json.load(f)
|
18 |
+
vae = CausalVideoAutoencoder.from_config(vae_config)
|
19 |
+
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
|
20 |
+
vae.load_state_dict(vae_state_dict)
|
21 |
+
return vae.cuda().to(torch.bfloat16)
|
22 |
|
23 |
+
def load_unet(unet_dir):
|
24 |
+
unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors"
|
25 |
+
unet_config_path = unet_dir / "config.json"
|
26 |
+
transformer_config = Transformer3DModel.load_config(unet_config_path)
|
27 |
+
transformer = Transformer3DModel.from_config(transformer_config)
|
28 |
+
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
|
29 |
+
transformer.load_state_dict(unet_state_dict, strict=True)
|
30 |
+
return transformer.cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
def load_scheduler(scheduler_dir):
|
33 |
+
scheduler_config_path = scheduler_dir / "scheduler_config.json"
|
34 |
+
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
35 |
+
return RectifiedFlowScheduler.from_config(scheduler_config)
|
|
|
|
|
|
|
36 |
|
37 |
+
def main():
|
38 |
+
# Parse command line arguments
|
39 |
+
parser = argparse.ArgumentParser(description='Load models from separate directories')
|
40 |
+
parser.add_argument('--separate_dir', type=str, required=True, help='Path to the directory containing unet, vae, and scheduler subdirectories')
|
41 |
+
args = parser.parse_args()
|
42 |
|
43 |
+
# Paths for the separate mode directories
|
44 |
+
separate_dir = Path(args.separate_dir)
|
45 |
+
unet_dir = separate_dir / 'unet'
|
46 |
+
vae_dir = separate_dir / 'vae'
|
47 |
+
scheduler_dir = separate_dir / 'scheduler'
|
|
|
48 |
|
49 |
+
# Load models
|
50 |
+
vae = load_vae(vae_dir)
|
51 |
+
unet = load_unet(unet_dir)
|
52 |
+
scheduler = load_scheduler(scheduler_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
# Patchifier (remains the same)
|
55 |
+
patchifier = SymmetricPatchifier(patch_size=1)
|
|
|
|
|
56 |
|
57 |
+
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to("cuda")
|
58 |
+
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
|
59 |
|
60 |
+
# Use submodels for the pipeline
|
61 |
+
submodel_dict = {
|
62 |
+
"transformer": unet, # using unet for transformer
|
63 |
+
"patchifier": patchifier,
|
64 |
+
"scheduler": scheduler,
|
65 |
+
"text_encoder": text_encoder,
|
66 |
+
"tokenizer": tokenizer,
|
67 |
+
"vae": vae,
|
68 |
+
}
|
69 |
|
70 |
+
pipeline = VideoPixArtAlphaPipeline(**submodel_dict).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
# Sample input
|
73 |
+
num_inference_steps = 20
|
74 |
+
num_images_per_prompt = 2
|
75 |
+
guidance_scale = 3
|
76 |
+
height = 512
|
77 |
+
width = 768
|
78 |
+
num_frames = 57
|
79 |
+
frame_rate = 25
|
80 |
+
sample = {
|
81 |
+
"prompt": "A middle-aged man with glasses and a salt-and-pepper beard is driving a car and talking, gesturing with his right hand. "
|
82 |
+
"The man is wearing a dark blue zip-up jacket and a light blue collared shirt. He is sitting in the driver's seat of a car with a black interior. The car is moving on a road with trees and bushes on either side. The man has a serious expression on his face and is looking straight ahead.",
|
83 |
+
'prompt_attention_mask': None, # Adjust attention masks as needed
|
84 |
+
'negative_prompt': "Ugly deformed",
|
85 |
+
'negative_prompt_attention_mask': None
|
86 |
+
}
|
87 |
+
|
88 |
+
# Generate images (video frames)
|
89 |
+
images = pipeline(
|
90 |
+
num_inference_steps=num_inference_steps,
|
91 |
+
num_images_per_prompt=num_images_per_prompt,
|
92 |
+
guidance_scale=guidance_scale,
|
93 |
+
generator=None,
|
94 |
+
output_type="pt",
|
95 |
+
callback_on_step_end=None,
|
96 |
+
height=height,
|
97 |
+
width=width,
|
98 |
+
num_frames=num_frames,
|
99 |
+
frame_rate=frame_rate,
|
100 |
+
**sample,
|
101 |
+
is_video=True,
|
102 |
+
vae_per_channel_normalize=True,
|
103 |
+
).images
|
104 |
+
|
105 |
+
print("Generated images (video frames).")
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
main()
|
xora/models/autoencoders/causal_video_autoencoder.py
CHANGED
@@ -126,6 +126,13 @@ class CausalVideoAutoencoder(AutoencoderKLWrapper):
|
|
126 |
return json.dumps(self.config.__dict__)
|
127 |
|
128 |
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
model_keys = set(name for name, _ in self.named_parameters())
|
130 |
|
131 |
key_mapping = {
|
@@ -133,9 +140,8 @@ class CausalVideoAutoencoder(AutoencoderKLWrapper):
|
|
133 |
"downsamplers.0": "downsample",
|
134 |
"upsamplers.0": "upsample",
|
135 |
}
|
136 |
-
|
137 |
converted_state_dict = {}
|
138 |
-
for key, value in
|
139 |
for k, v in key_mapping.items():
|
140 |
key = key.replace(k, v)
|
141 |
|
@@ -147,6 +153,20 @@ class CausalVideoAutoencoder(AutoencoderKLWrapper):
|
|
147 |
|
148 |
super().load_state_dict(converted_state_dict, strict=strict)
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
def last_layer(self):
|
151 |
if hasattr(self.decoder, "conv_out"):
|
152 |
if isinstance(self.decoder.conv_out, nn.Sequential):
|
|
|
126 |
return json.dumps(self.config.__dict__)
|
127 |
|
128 |
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
|
129 |
+
per_channel_statistics_prefix = "per_channel_statistics."
|
130 |
+
ckpt_state_dict = {
|
131 |
+
key: value
|
132 |
+
for key, value in state_dict.items()
|
133 |
+
if not key.startswith(per_channel_statistics_prefix)
|
134 |
+
}
|
135 |
+
|
136 |
model_keys = set(name for name, _ in self.named_parameters())
|
137 |
|
138 |
key_mapping = {
|
|
|
140 |
"downsamplers.0": "downsample",
|
141 |
"upsamplers.0": "upsample",
|
142 |
}
|
|
|
143 |
converted_state_dict = {}
|
144 |
+
for key, value in ckpt_state_dict.items():
|
145 |
for k, v in key_mapping.items():
|
146 |
key = key.replace(k, v)
|
147 |
|
|
|
153 |
|
154 |
super().load_state_dict(converted_state_dict, strict=strict)
|
155 |
|
156 |
+
data_dict = {
|
157 |
+
key.removeprefix(per_channel_statistics_prefix): value
|
158 |
+
for key, value in state_dict.items()
|
159 |
+
if key.startswith(per_channel_statistics_prefix)
|
160 |
+
}
|
161 |
+
if len(data_dict) > 0:
|
162 |
+
self.register_buffer("std_of_means", data_dict["std-of-means"])
|
163 |
+
self.register_buffer(
|
164 |
+
"mean_of_means",
|
165 |
+
data_dict.get(
|
166 |
+
"mean-of-means", torch.zeros_like(data_dict["std-of-means"])
|
167 |
+
),
|
168 |
+
)
|
169 |
+
|
170 |
def last_layer(self):
|
171 |
if hasattr(self.decoder, "conv_out"):
|
172 |
if isinstance(self.decoder.conv_out, nn.Sequential):
|