LTX-Video-Playground / xora /examples /image_to_video.py
Sapir's picture
Examples: update and fix scripts.
e46ff5e
raw
history blame
4.06 kB
import torch
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
from pathlib import Path
from transformers import T5EncoderModel, T5Tokenizer
import safetensors.torch
import json
import argparse
def load_vae(vae_dir):
vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors"
vae_config_path = vae_dir / "config.json"
with open(vae_config_path, 'r') as f:
vae_config = json.load(f)
vae = CausalVideoAutoencoder.from_config(vae_config)
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
vae.load_state_dict(vae_state_dict)
return vae.cuda().to(torch.bfloat16)
def load_unet(unet_dir):
unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors"
unet_config_path = unet_dir / "config.json"
transformer_config = Transformer3DModel.load_config(unet_config_path)
transformer = Transformer3DModel.from_config(transformer_config)
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
transformer.load_state_dict(unet_state_dict, strict=True)
return transformer.cuda()
def load_scheduler(scheduler_dir):
scheduler_config_path = scheduler_dir / "scheduler_config.json"
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
return RectifiedFlowScheduler.from_config(scheduler_config)
def main():
# Parse command line arguments
parser = argparse.ArgumentParser(description='Load models from separate directories')
parser.add_argument('--separate_dir', type=str, required=True, help='Path to the directory containing unet, vae, and scheduler subdirectories')
args = parser.parse_args()
# Paths for the separate mode directories
separate_dir = Path(args.separate_dir)
unet_dir = separate_dir / 'unet'
vae_dir = separate_dir / 'vae'
scheduler_dir = separate_dir / 'scheduler'
# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
# Patchifier (remains the same)
patchifier = SymmetricPatchifier(patch_size=1)
# text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to("cuda")
# tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
# Use submodels for the pipeline
submodel_dict = {
"transformer": unet, # using unet for transformer
"patchifier": patchifier,
"text_encoder": None,
"tokenizer": None,
"scheduler": scheduler,
"vae": vae,
}
model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS"
pipeline = VideoPixArtAlphaPipeline(
**submodel_dict
).to("cuda")
num_inference_steps = 20
num_images_per_prompt = 1
guidance_scale = 3
height = 512
width = 768
num_frames = 57
frame_rate = 25
# Sample input stays the same
sample = torch.load("/opt/sample_media.pt")
for key, item in sample.items():
if item is not None:
sample[key] = item.cuda()
# media_items = torch.load("/opt/sample_media.pt")
# Generate images (video frames)
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
guidance_scale=guidance_scale,
generator=None,
output_type="pt",
callback_on_step_end=None,
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
).images
print("Generated video frames.")
if __name__ == "__main__":
main()