LightFury9's picture
Upload app.py
32fd60b
raw
history blame
3.75 kB
import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib.cm as cm
model = tf.keras.models.load_model('./EfficientNetB3')
pred_model = tf.keras.models.load_model('./ConvNeXtTiny')
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
# First, we create a model that maps the input image to the activations
# of the last conv layer as well as the output predictions
grad_model = keras.models.Model(
model.inputs, [model.get_layer(last_conv_layer_name).output, model.output]
)
# Then, we compute the gradient of the top predicted class for our input image
# with respect to the activations of the last conv layer
with tf.GradientTape() as tape:
last_conv_layer_output, preds = grad_model(img_array)
if pred_index is None:
pred_index = tf.argmax(preds[0])
class_channel = preds[:, pred_index]
# This is the gradient of the output neuron (top predicted or chosen)
# with regard to the output feature map of the last conv layer
grads = tape.gradient(class_channel, last_conv_layer_output)
# This is a vector where each entry is the mean intensity of the gradient
# over a specific feature map channel
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
# We multiply each channel in the feature map array
# by "how important this channel is" with regard to the top predicted class
# then sum all the channels to obtain the heatmap class activation
last_conv_layer_output = last_conv_layer_output[0]
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
# For visualization purpose, we will also normalize the heatmap between 0 & 1
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
return heatmap.numpy()
def gradio_img_array(img):
# `img` is a PIL image of size 299x299
# img = keras.utils.load_img(img_path, target_size=size)
# `array` is a float32 Numpy array of shape (299, 299, 3)
array = keras.utils.img_to_array(img)
# We add a dimension to transform our array into a "batch"
# of size (1, 299, 299, 3)
array = np.expand_dims(array, axis=0)
return array
def gradio_display_gradcam(img_path, heatmap, cam_path="cam.jpg", alpha=0.4):
# Load the original image
# img = keras.utils.load_img(img_path)
img = keras.utils.img_to_array(img_path)
# Rescale heatmap to a range 0-255
heatmap = np.uint8(255 * heatmap)
# Use jet colormap to colorize heatmap
jet = cm.get_cmap("jet")
# Use RGB values of the colormap
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
# Create an image with RGB colorized heatmap
jet_heatmap = keras.utils.array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
jet_heatmap = keras.utils.img_to_array(jet_heatmap)
# Superimpose the heatmap on original image
superimposed_img = jet_heatmap * alpha + img
superimposed_img = keras.utils.array_to_img(superimposed_img)
return superimposed_img
import gradio as gr
def test(img_path):
# Prepare image
img_array = tf.keras.applications.efficientnet.preprocess_input(gradio_img_array(img_path))
heatmap = make_gradcam_heatmap(img_array, model, "block7b_project_conv")
img = gradio_display_gradcam(img_path, heatmap, cam_path="cam2.jpg")
preds = pred_model.predict(img_array, verbose=0)[0]
preds_dict = {"0": float(preds[0]), "1": float(preds[1]), "2": float(preds[2]), "3": float(preds[3]), "4": float(preds[4])}
return img, preds_dict
interf = gr.Interface(fn=test, inputs="image", outputs=["image", "label"])
interf.launch()