LightFury9
commited on
Commit
•
32fd60b
1
Parent(s):
5f63a62
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow import keras
|
4 |
+
import matplotlib.cm as cm
|
5 |
+
|
6 |
+
model = tf.keras.models.load_model('./EfficientNetB3')
|
7 |
+
pred_model = tf.keras.models.load_model('./ConvNeXtTiny')
|
8 |
+
|
9 |
+
|
10 |
+
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
|
11 |
+
# First, we create a model that maps the input image to the activations
|
12 |
+
# of the last conv layer as well as the output predictions
|
13 |
+
grad_model = keras.models.Model(
|
14 |
+
model.inputs, [model.get_layer(last_conv_layer_name).output, model.output]
|
15 |
+
)
|
16 |
+
|
17 |
+
# Then, we compute the gradient of the top predicted class for our input image
|
18 |
+
# with respect to the activations of the last conv layer
|
19 |
+
with tf.GradientTape() as tape:
|
20 |
+
last_conv_layer_output, preds = grad_model(img_array)
|
21 |
+
if pred_index is None:
|
22 |
+
pred_index = tf.argmax(preds[0])
|
23 |
+
class_channel = preds[:, pred_index]
|
24 |
+
|
25 |
+
# This is the gradient of the output neuron (top predicted or chosen)
|
26 |
+
# with regard to the output feature map of the last conv layer
|
27 |
+
grads = tape.gradient(class_channel, last_conv_layer_output)
|
28 |
+
|
29 |
+
# This is a vector where each entry is the mean intensity of the gradient
|
30 |
+
# over a specific feature map channel
|
31 |
+
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
32 |
+
|
33 |
+
# We multiply each channel in the feature map array
|
34 |
+
# by "how important this channel is" with regard to the top predicted class
|
35 |
+
# then sum all the channels to obtain the heatmap class activation
|
36 |
+
last_conv_layer_output = last_conv_layer_output[0]
|
37 |
+
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
|
38 |
+
heatmap = tf.squeeze(heatmap)
|
39 |
+
|
40 |
+
# For visualization purpose, we will also normalize the heatmap between 0 & 1
|
41 |
+
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
|
42 |
+
return heatmap.numpy()
|
43 |
+
|
44 |
+
def gradio_img_array(img):
|
45 |
+
# `img` is a PIL image of size 299x299
|
46 |
+
# img = keras.utils.load_img(img_path, target_size=size)
|
47 |
+
# `array` is a float32 Numpy array of shape (299, 299, 3)
|
48 |
+
array = keras.utils.img_to_array(img)
|
49 |
+
# We add a dimension to transform our array into a "batch"
|
50 |
+
# of size (1, 299, 299, 3)
|
51 |
+
array = np.expand_dims(array, axis=0)
|
52 |
+
return array
|
53 |
+
|
54 |
+
|
55 |
+
def gradio_display_gradcam(img_path, heatmap, cam_path="cam.jpg", alpha=0.4):
|
56 |
+
# Load the original image
|
57 |
+
# img = keras.utils.load_img(img_path)
|
58 |
+
img = keras.utils.img_to_array(img_path)
|
59 |
+
|
60 |
+
# Rescale heatmap to a range 0-255
|
61 |
+
heatmap = np.uint8(255 * heatmap)
|
62 |
+
|
63 |
+
# Use jet colormap to colorize heatmap
|
64 |
+
jet = cm.get_cmap("jet")
|
65 |
+
|
66 |
+
# Use RGB values of the colormap
|
67 |
+
jet_colors = jet(np.arange(256))[:, :3]
|
68 |
+
jet_heatmap = jet_colors[heatmap]
|
69 |
+
|
70 |
+
# Create an image with RGB colorized heatmap
|
71 |
+
jet_heatmap = keras.utils.array_to_img(jet_heatmap)
|
72 |
+
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
|
73 |
+
jet_heatmap = keras.utils.img_to_array(jet_heatmap)
|
74 |
+
|
75 |
+
# Superimpose the heatmap on original image
|
76 |
+
superimposed_img = jet_heatmap * alpha + img
|
77 |
+
superimposed_img = keras.utils.array_to_img(superimposed_img)
|
78 |
+
return superimposed_img
|
79 |
+
|
80 |
+
import gradio as gr
|
81 |
+
|
82 |
+
def test(img_path):
|
83 |
+
# Prepare image
|
84 |
+
img_array = tf.keras.applications.efficientnet.preprocess_input(gradio_img_array(img_path))
|
85 |
+
heatmap = make_gradcam_heatmap(img_array, model, "block7b_project_conv")
|
86 |
+
img = gradio_display_gradcam(img_path, heatmap, cam_path="cam2.jpg")
|
87 |
+
preds = pred_model.predict(img_array, verbose=0)[0]
|
88 |
+
preds_dict = {"0": float(preds[0]), "1": float(preds[1]), "2": float(preds[2]), "3": float(preds[3]), "4": float(preds[4])}
|
89 |
+
return img, preds_dict
|
90 |
+
|
91 |
+
|
92 |
+
interf = gr.Interface(fn=test, inputs="image", outputs=["image", "label"])
|
93 |
+
|
94 |
+
interf.launch()
|