hones / model_and_load_toduckdb.py
LeonceNsh's picture
Upload folder using huggingface_hub
1885ec3 verified
"""
H1B Data Analytics Pipeline
This module provides a comprehensive ETL pipeline for processing H1B visa application data.
It loads CSV files into DuckDB, creates dimensional models, and performs data quality checks.
"""
import os
import gc
import logging
import hashlib
from datetime import datetime
from typing import List, Optional, Tuple
import traceback
import duckdb
import pandas as pd
import numpy as np
import psutil
class H1BDataPipeline:
"""
Main pipeline class for processing H1B visa application data.
This class handles the complete ETL process including:
- Loading CSV files into DuckDB
- Creating dimensional models
- Data quality checks
- Database persistence
"""
def __init__(self, db_path: str = ':memory:', log_level: int = logging.INFO):
"""
Initialize the H1B data pipeline.
Args:
db_path: Path to DuckDB database file. Use ':memory:' for in-memory database.
log_level: Logging level for the pipeline.
"""
self.db_path = db_path
self.conn = None
self.logger = self._setup_logging(log_level)
self._setup_database()
def _setup_logging(self, log_level: int) -> logging.Logger:
"""Set up logging configuration for the pipeline."""
logger = logging.getLogger(__name__)
logging.basicConfig(
level=log_level,
format="{asctime} - {name} - {levelname} - {message}",
style="{",
datefmt="%Y-%m-%d %H:%M:%S",
)
return logger
def _setup_database(self) -> None:
"""Initialize DuckDB connection."""
try:
self.conn = duckdb.connect(self.db_path)
self.logger.info(f"DuckDB connection established to {self.db_path}")
self.logger.info(f"DuckDB version: {duckdb.__version__}")
# Test connection
test_result = self.conn.execute("SELECT 'Hello DuckDB!' as message").fetchone()
self.logger.info(f"Connection test: {test_result[0]}")
except Exception as e:
self.logger.error(f"Failed to establish database connection: {e}")
raise
def __enter__(self):
"""Context manager entry."""
return self
def close(self) -> None:
"""Close database connection and cleanup resources."""
if self.conn:
self.conn.close()
self.logger.info("Database connection closed")
def __exit__(self, exc_type, exc_val, exc_tb):
"""Context manager exit with cleanup."""
self.close()
class MemoryManager:
"""Utility class for monitoring and managing memory usage."""
@staticmethod
def check_memory_usage() -> float:
"""
Check current memory usage of the process.
Returns:
Memory usage in MB.
"""
process = psutil.Process(os.getpid())
memory_mb = process.memory_info().rss / 1024 / 1024
print(f"Current memory usage: {memory_mb:.1f} MB")
return memory_mb
@staticmethod
def clear_memory() -> None:
"""Force garbage collection to clear memory."""
gc.collect()
print("Memory cleared")
class FileValidator:
"""Utility class for validating file existence and accessibility."""
@staticmethod
def validate_files(file_paths: List[str]) -> Tuple[List[str], List[str]]:
"""
Validate that files exist and are accessible.
Args:
file_paths: List of file paths to validate.
Returns:
Tuple of (existing_files, missing_files).
"""
existing_files = []
missing_files = []
for file_path in file_paths:
if os.path.exists(file_path):
existing_files.append(file_path)
print(f"✓ Found: {file_path}")
else:
missing_files.append(file_path)
print(f"✗ Missing: {file_path}")
return existing_files, missing_files
class DataLoader:
"""Handles loading data from various sources into DuckDB."""
def __init__(self, conn: duckdb.DuckDBPyConnection, logger: logging.Logger):
"""
Initialize data loader.
Args:
conn: DuckDB connection object.
logger: Logger instance for tracking operations.
"""
self.conn = conn
self.logger = logger
def load_csv_files(self, file_paths: List[str]) -> None:
"""
Load CSV files directly into DuckDB without loading into pandas first.
Args:
file_paths: List of CSV file paths to load.
"""
self.logger.info("Loading CSV files directly into DuckDB...")
for file_path in file_paths:
try:
self._load_single_csv(file_path)
except Exception as e:
self.logger.error(f"Error loading {file_path}: {e}")
def _load_single_csv(self, file_path: str) -> None:
"""
Load a single CSV file into DuckDB.
Args:
file_path: Path to the CSV file.
"""
self.logger.info(f"Loading {file_path}")
# Extract metadata from filename
filename = file_path.split('/')[-1].replace('.csv', '')
table_name = f"raw_{filename}"
fiscal_year = self._extract_fiscal_year(filename)
# Load CSV directly into DuckDB
self.conn.execute(f"""
CREATE TABLE {table_name} AS
SELECT *,
'{file_path}' as source_file,
'{fiscal_year}' as fiscal_year
FROM read_csv_auto('{file_path}', header=true, normalize_names=true, ignore_errors=true)
""")
# Clean column names
self._clean_column_names(table_name)
# Log success
count = self.conn.execute(f"SELECT COUNT(*) FROM {table_name}").fetchone()[0]
self.logger.info(f"Loaded {count:,} records from {file_path} into {table_name}")
def _extract_fiscal_year(self, filename: str) -> str:
"""Extract fiscal year from filename."""
import re
match = re.search(r'FY(\d{4})', filename)
if match:
return match.group(1) # Return only the year digits
return "unknown"
def _clean_column_names(self, table_name: str) -> None:
"""
Clean column names in DuckDB table.
Args:
table_name: Name of the table to clean.
"""
columns_query = f"PRAGMA table_info('{table_name}')"
columns_info = self.conn.execute(columns_query).fetchall()
for col_info in columns_info:
old_name = col_info[1]
new_name = self._normalize_column_name(old_name)
if old_name != new_name:
self.conn.execute(f"""
ALTER TABLE {table_name}
RENAME COLUMN "{old_name}" TO {new_name}
""")
@staticmethod
def _normalize_column_name(column_name: str) -> str:
"""
Normalize column name to follow consistent naming convention.
Args:
column_name: Original column name.
Returns:
Normalized column name.
"""
import re
# Remove URLs and other problematic patterns
normalized = re.sub(r'https?://[^\s]+', '', str(column_name))
normalized = re.sub(r'[^\w\s]', '_', normalized) # Replace special chars with underscore
normalized = re.sub(r'\s+', '_', normalized) # Replace spaces with underscore
normalized = re.sub(r'_+', '_', normalized) # Replace multiple underscores with single
normalized = normalized.lower().strip('_') # Lowercase and trim underscores
# Ensure it starts with letter or underscore
if normalized and not (normalized[0].isalpha() or normalized[0] == '_'):
normalized = f'col_{normalized}'
return normalized if normalized else 'unnamed_column'
class DataTransformer:
"""Handles data transformation and dimensional modeling."""
def __init__(self, conn: duckdb.DuckDBPyConnection, logger: logging.Logger):
"""
Initialize data transformer.
Args:
conn: DuckDB connection object.
logger: Logger instance for tracking operations.
"""
self.conn = conn
self.logger = logger
def create_combined_table(self) -> None:
"""Create a combined table from all raw tables in DuckDB."""
self.logger.info("Creating combined table in DuckDB...")
# Get list of raw tables
raw_tables = self.conn.execute("""
SELECT table_name
FROM information_schema.tables
WHERE table_name LIKE 'raw_%'
""").fetchall()
if not raw_tables:
raise ValueError("No raw tables found")
# Create union query
union_parts = [f"SELECT * FROM {table_info[0]}" for table_info in raw_tables]
union_query = " UNION ALL ".join(union_parts)
# Create combined table
self.conn.execute(f"""
CREATE TABLE combined_data AS
{union_query}
""")
count = self.conn.execute("SELECT COUNT(*) FROM combined_data").fetchone()[0]
self.logger.info(f"Created combined table with {count:,} records")
def remove_columns_with_missing_data(self, table_name: str, threshold: float = 0.8) -> List[str]:
"""
Remove columns with high missing data directly in DuckDB.
Args:
table_name: Name of the table to clean.
threshold: Threshold for missing data ratio (0.0 to 1.0).
Returns:
List of columns that were kept.
"""
self.logger.info(f"Removing columns with >{threshold*100}% missing data from {table_name}...")
total_rows = self.conn.execute(f"SELECT COUNT(*) FROM {table_name}").fetchone()[0]
columns_info = self.conn.execute(f"PRAGMA table_info('{table_name}')").fetchall()
columns_to_keep = []
columns_removed = []
for col_info in columns_info:
col_name = col_info[1]
col_type = col_info[2] # Get column type for better handling
try:
# Handle different column types appropriately
if col_type.upper() in ['INTEGER', 'BIGINT', 'DOUBLE', 'FLOAT', 'DECIMAL', 'NUMERIC']:
# For numeric columns, only check for NULL
non_null_count = self.conn.execute(f"""
SELECT COUNT(*)
FROM {table_name}
WHERE "{col_name}" IS NOT NULL
""").fetchone()[0]
else:
# For text columns, check for NULL and empty strings
non_null_count = self.conn.execute(f"""
SELECT COUNT(*)
FROM {table_name}
WHERE "{col_name}" IS NOT NULL
AND TRIM(CAST("{col_name}" AS VARCHAR)) != ''
""").fetchone()[0]
missing_ratio = 1 - (non_null_count / total_rows)
self.logger.debug(f"Column {col_name}: {non_null_count}/{total_rows} non-null ({missing_ratio:.2%} missing)")
if missing_ratio <= threshold:
columns_to_keep.append(col_name)
else:
columns_removed.append(col_name)
self.logger.info(f"Removing column {col_name} with {missing_ratio:.2%} missing data")
except Exception as e:
self.logger.warning(f"Error processing column {col_name}: {e}")
# When in doubt, keep the column
columns_to_keep.append(col_name)
if columns_removed:
self.logger.info(f"Removing {len(columns_removed)} columns with high missing data")
self._recreate_table_with_columns(table_name, columns_to_keep)
return columns_to_keep
def _recreate_table_with_columns(self, table_name: str, columns_to_keep: List[str]) -> None:
"""
Recreate table with only specified columns.
Args:
table_name: Original table name.
columns_to_keep: List of column names to retain.
"""
columns_str = ', '.join(columns_to_keep)
self.conn.execute(f"""
CREATE TABLE {table_name}_clean AS
SELECT {columns_str}
FROM {table_name}
""")
self.conn.execute(f"DROP TABLE {table_name}")
self.conn.execute(f"ALTER TABLE {table_name}_clean RENAME TO {table_name}")
class DimensionalModeler:
"""Creates dimensional model tables for analytics."""
def __init__(self, conn: duckdb.DuckDBPyConnection, logger: logging.Logger):
"""
Initialize dimensional modeler.
Args:
conn: DuckDB connection object.
logger: Logger instance for tracking operations.
"""
self.conn = conn
self.logger = logger
def create_all_dimensions(self) -> None:
"""Create all dimension tables."""
self._prepare_cleaned_data()
self._create_beneficiary_dimension()
self._create_employer_dimension()
self._create_job_dimension()
self._create_agent_dimension()
self._create_status_dimension()
self._create_date_dimension()
def _prepare_cleaned_data(self) -> None:
"""Prepare cleaned data table for dimension creation."""
self.logger.info("Preparing cleaned data...")
# First, check what columns actually exist in combined_data
columns_info = self.conn.execute("PRAGMA table_info('combined_data')").fetchall()
available_columns = [col[1] for col in columns_info]
self.logger.info(f"Available columns in combined_data: {available_columns}")
self.conn.execute("""
CREATE TABLE cleaned_data AS
SELECT
ROW_NUMBER() OVER () as original_row_id,
*
FROM combined_data
""")
def _create_beneficiary_dimension(self) -> None:
"""Create beneficiary dimension table."""
self.logger.info("Creating dim_beneficiary...")
self.conn.execute("""
CREATE TABLE dim_beneficiary AS
SELECT DISTINCT
ROW_NUMBER() OVER () as beneficiary_key,
MD5(CONCAT(
COALESCE(country_of_birth, ''), '|',
COALESCE(country_of_nationality, ''), '|',
COALESCE(CAST(ben_year_of_birth AS VARCHAR), ''), '|',
COALESCE(gender, '')
)) as beneficiary_id,
country_of_birth,
country_of_nationality,
ben_year_of_birth,
gender,
ben_sex,
ben_country_of_birth,
ben_current_class,
ben_education_code,
ed_level_definition,
ben_pfield_of_study
FROM cleaned_data
WHERE country_of_birth IS NOT NULL
OR country_of_nationality IS NOT NULL
OR ben_year_of_birth IS NOT NULL
OR gender IS NOT NULL
""")
def _create_employer_dimension(self) -> None:
"""Create employer dimension table."""
self.logger.info("Creating dim_employer...")
self.conn.execute("""
CREATE TABLE dim_employer AS
SELECT DISTINCT
ROW_NUMBER() OVER () as employer_key,
MD5(CONCAT(
COALESCE(employer_name, ''), '|',
COALESCE(fein, '')
)) as employer_id,
employer_name,
fein,
mail_addr,
city,
state,
zip
FROM cleaned_data
WHERE employer_name IS NOT NULL OR fein IS NOT NULL
""")
def _create_job_dimension(self) -> None:
"""Create job dimension table."""
self.logger.info("Creating dim_job...")
self.conn.execute("""
CREATE TABLE dim_job AS
SELECT DISTINCT
ROW_NUMBER() OVER () as job_key,
MD5(CONCAT(
COALESCE(job_title, ''), '|',
COALESCE(naics_code, '')
)) as job_id,
job_title,
dot_code,
naics_code,
wage_amt,
wage_unit,
full_time_ind,
ben_comp_paid,
worksite_city,
worksite_state
FROM cleaned_data
WHERE job_title IS NOT NULL OR naics_code IS NOT NULL
""")
def _create_agent_dimension(self) -> None:
"""Create agent dimension table."""
self.logger.info("Creating dim_agent...")
self.conn.execute("""
CREATE TABLE dim_agent AS
SELECT DISTINCT
ROW_NUMBER() OVER () as agent_key,
MD5(CONCAT(
COALESCE(agent_first_name, ''), '|',
COALESCE(agent_last_name, '')
)) as agent_id,
agent_first_name,
agent_last_name
FROM cleaned_data
WHERE agent_first_name IS NOT NULL OR agent_last_name IS NOT NULL
""")
def _create_status_dimension(self) -> None:
"""Create status dimension table."""
self.logger.info("Creating dim_status...")
self.conn.execute("""
CREATE TABLE dim_status AS
SELECT DISTINCT
ROW_NUMBER() OVER () as status_key,
status_type,
first_decision
FROM cleaned_data
WHERE status_type IS NOT NULL OR first_decision IS NOT NULL
""")
def _create_date_dimension(self) -> None:
"""Create date dimension table."""
self.logger.info("Creating dim_date...")
self.conn.execute("""
CREATE TABLE dim_date AS
WITH all_dates AS (
-- Handle MM/DD/YYYY format
SELECT TRY_STRPTIME(rec_date, '%m/%d/%Y') as date_value
FROM cleaned_data
WHERE rec_date IS NOT NULL
AND rec_date NOT LIKE '%(%'
AND LENGTH(rec_date) >= 8
AND rec_date ~ '^[0-9/-]+$'
AND TRY_STRPTIME(rec_date, '%m/%d/%Y') IS NOT NULL
UNION
-- Handle YYYY-MM-DD format
SELECT TRY_STRPTIME(rec_date, '%Y-%m-%d') as date_value
FROM cleaned_data
WHERE rec_date IS NOT NULL
AND rec_date NOT LIKE '%(%'
AND LENGTH(rec_date) >= 8
AND rec_date ~ '^[0-9-]+$'
AND TRY_STRPTIME(rec_date, '%Y-%m-%d') IS NOT NULL
UNION
-- Handle first_decision_date MM/DD/YYYY format
SELECT TRY_STRPTIME(first_decision_date, '%m/%d/%Y') as date_value
FROM cleaned_data
WHERE first_decision_date IS NOT NULL
AND first_decision_date NOT LIKE '%(%'
AND LENGTH(first_decision_date) >= 8
AND first_decision_date ~ '^[0-9/-]+$'
AND TRY_STRPTIME(first_decision_date, '%m/%d/%Y') IS NOT NULL
UNION
-- Handle first_decision_date YYYY-MM-DD format
SELECT TRY_STRPTIME(first_decision_date, '%Y-%m-%d') as date_value
FROM cleaned_data
WHERE first_decision_date IS NOT NULL
AND first_decision_date NOT LIKE '%(%'
AND LENGTH(first_decision_date) >= 8
AND first_decision_date ~ '^[0-9-]+$'
AND TRY_STRPTIME(first_decision_date, '%Y-%m-%d') IS NOT NULL
UNION
-- Handle valid_from MM/DD/YYYY format
SELECT TRY_STRPTIME(valid_from, '%m/%d/%Y') as date_value
FROM cleaned_data
WHERE valid_from IS NOT NULL
AND valid_from NOT LIKE '%(%'
AND LENGTH(valid_from) >= 8
AND valid_from ~ '^[0-9/-]+$'
AND TRY_STRPTIME(valid_from, '%m/%d/%Y') IS NOT NULL
UNION
-- Handle valid_from YYYY-MM-DD format
SELECT TRY_STRPTIME(valid_from, '%Y-%m-%d') as date_value
FROM cleaned_data
WHERE valid_from IS NOT NULL
AND valid_from NOT LIKE '%(%'
AND LENGTH(valid_from) >= 8
AND valid_from ~ '^[0-9-]+$'
AND TRY_STRPTIME(valid_from, '%Y-%m-%d') IS NOT NULL
UNION
-- Handle valid_to MM/DD/YYYY format
SELECT TRY_STRPTIME(valid_to, '%m/%d/%Y') as date_value
FROM cleaned_data
WHERE valid_to IS NOT NULL
AND valid_to NOT LIKE '%(%'
AND LENGTH(valid_to) >= 8
AND valid_to ~ '^[0-9/]+$'
AND valid_to LIKE '%/%/%'
AND TRY_STRPTIME(valid_to, '%m/%d/%Y') IS NOT NULL
UNION
-- Handle valid_to YYYY-MM-DD format
SELECT TRY_STRPTIME(valid_to, '%Y-%m-%d') as date_value
FROM cleaned_data
WHERE valid_to IS NOT NULL
AND valid_to NOT LIKE '%(%'
AND LENGTH(valid_to) >= 8
AND valid_to ~ '^[0-9-]+$'
AND TRY_STRPTIME(valid_to, '%Y-%m-%d') IS NOT NULL
)
SELECT DISTINCT
date_value as date,
EXTRACT(YEAR FROM date_value) as year,
EXTRACT(MONTH FROM date_value) as month,
EXTRACT(QUARTER FROM date_value) as quarter,
EXTRACT(DOW FROM date_value) as day_of_week,
MONTHNAME(date_value) as month_name,
'Q' || CAST(EXTRACT(QUARTER FROM date_value) AS VARCHAR) as quarter_name,
CASE
WHEN EXTRACT(MONTH FROM date_value) >= 10
THEN EXTRACT(YEAR FROM date_value)
ELSE EXTRACT(YEAR FROM date_value) - 1
END as fiscal_year
FROM all_dates
WHERE date_value IS NOT NULL
ORDER BY date_value
""")
def create_fact_table(self) -> None:
"""Create the fact table with foreign keys."""
self.logger.info("Creating fact table in DuckDB...")
self.conn.execute("""
CREATE TABLE fact_h1b_applications AS
SELECT
ROW_NUMBER() OVER () as record_id,
COALESCE(db.beneficiary_key, -1) as beneficiary_key,
COALESCE(de.employer_key, -1) as employer_key,
COALESCE(dj.job_key, -1) as job_key,
COALESCE(da.agent_key, -1) as agent_key,
COALESCE(ds.status_key, -1) as status_key,
-- Handle multiple date formats for rec_date
CASE
WHEN cd.rec_date IS NOT NULL AND cd.rec_date NOT LIKE '%(%'
THEN CASE
WHEN TRY_STRPTIME(cd.rec_date, '%m/%d/%Y') IS NOT NULL
THEN CAST(STRFTIME('%Y%m%d', TRY_STRPTIME(cd.rec_date, '%m/%d/%Y')) AS INTEGER)
WHEN TRY_STRPTIME(cd.rec_date, '%Y-%m-%d') IS NOT NULL
THEN CAST(STRFTIME('%Y%m%d', TRY_STRPTIME(cd.rec_date, '%Y-%m-%d')) AS INTEGER)
ELSE NULL
END
ELSE NULL
END as rec_date_key,
-- Handle multiple date formats for first_decision_date
CASE
WHEN cd.first_decision_date IS NOT NULL AND cd.first_decision_date NOT LIKE '%(%'
THEN CASE
WHEN TRY_STRPTIME(cd.first_decision_date, '%m/%d/%Y') IS NOT NULL
THEN CAST(STRFTIME('%Y%m%d', TRY_STRPTIME(cd.first_decision_date, '%m/%d/%Y')) AS INTEGER)
WHEN TRY_STRPTIME(cd.first_decision_date, '%Y-%m-%d') IS NOT NULL
THEN CAST(STRFTIME('%Y%m%d', TRY_STRPTIME(cd.first_decision_date, '%Y-%m-%d')) AS INTEGER)
ELSE NULL
END
ELSE NULL
END as first_decision_date_key,
cd.lottery_year,
cd.ben_multi_reg_ind,
cd.receipt_number,
cd.source_file,
cd.fiscal_year
FROM cleaned_data cd
LEFT JOIN dim_beneficiary db ON
cd.original_row_id = db.beneficiary_key AND
COALESCE(cd.country_of_birth, '') = COALESCE(db.country_of_birth, '') AND
COALESCE(cd.country_of_nationality, '') = COALESCE(db.country_of_nationality, '') AND
COALESCE(cd.ben_year_of_birth, '0') = COALESCE(db.ben_year_of_birth, '0') AND
COALESCE(cd.gender, '') = COALESCE(db.gender, '')
LEFT JOIN dim_employer de ON
cd.original_row_id = de.employer_key AND
COALESCE(cd.employer_name, '') = COALESCE(de.employer_name, '') AND
COALESCE(cd.fein, '') = COALESCE(de.fein, '')
LEFT JOIN dim_job dj ON
cd.original_row_id = dj.job_key AND
COALESCE(cd.job_title, '') = COALESCE(dj.job_title, '') AND
COALESCE(cd.naics_code, '') = COALESCE(dj.naics_code, '')
LEFT JOIN dim_agent da ON
cd.original_row_id = da.agent_key AND
COALESCE(cd.agent_first_name, '') = COALESCE(da.agent_first_name, '') AND
COALESCE(cd.agent_last_name, '') = COALESCE(da.agent_last_name, '')
LEFT JOIN dim_status ds ON
cd.original_row_id = ds.status_key AND
COALESCE(cd.status_type, '') = COALESCE(ds.status_type, '') AND
COALESCE(cd.first_decision, '') = COALESCE(ds.first_decision, '')
""")
def create_lookup_tables(self) -> None:
"""Create lookup tables for reference data."""
self.logger.info("Creating lookup tables in DuckDB...")
# Country codes lookup
self.conn.execute("""
CREATE TABLE lookup_country_codes AS
SELECT * FROM VALUES
('IND', 'India', 'Asia'),
('CHN', 'China', 'Asia'),
('KOR', 'South Korea', 'Asia'),
('CAN', 'Canada', 'North America'),
('NPL', 'Nepal', 'Asia'),
('USA', 'United States', 'North America')
AS t(country_code, country_name, region)
""")
# Education levels
self.conn.execute("""
CREATE TABLE lookup_education_levels AS
SELECT * FROM VALUES
('A', 'No Diploma', 'Basic'),
('B', 'High School', 'Basic'),
('C', 'Some College', 'Undergraduate'),
('D', 'College No Degree', 'Undergraduate'),
('E', 'Associates', 'Undergraduate'),
('F', 'Bachelors', 'Undergraduate'),
('G', 'Masters', 'Graduate'),
('H', 'Professional', 'Graduate'),
('I', 'Doctorate', 'Graduate')
AS t(education_code, education_level, education_category)
""")
# Application status types
self.conn.execute("""
CREATE TABLE lookup_status_types AS
SELECT * FROM VALUES
('ELIGIBLE', 'Application is eligible for lottery', 'Lottery'),
('SELECTED', 'Selected in H-1B lottery', 'Lottery'),
('CREATED', 'Application record created', 'Administrative')
AS t(status_type, status_description, status_category)
""")
class DatabaseOptimizer:
"""Handles database optimization and indexing."""
def __init__(self, conn: duckdb.DuckDBPyConnection, logger: logging.Logger):
"""
Initialize database optimizer.
Args:
conn: DuckDB connection object.
logger: Logger instance for tracking operations.
"""
self.conn = conn
self.logger = logger
def create_indexes(self) -> None:
"""Create indexes for better query performance."""
self.logger.info("Creating indexes in DuckDB...")
indexes = [
("idx_fact_beneficiary", "fact_h1b_applications", "beneficiary_key"),
("idx_fact_employer", "fact_h1b_applications", "employer_key"),
("idx_fact_job", "fact_h1b_applications", "job_key"),
("idx_fact_lottery_year", "fact_h1b_applications", "lottery_year"),
("idx_fact_fiscal_year", "fact_h1b_applications", "fiscal_year"),
("idx_fact_rec_date", "fact_h1b_applications", "rec_date_key"),
("idx_dim_beneficiary_id", "dim_beneficiary", "beneficiary_id"),
("idx_dim_employer_id", "dim_employer", "employer_id"),
("idx_dim_job_id", "dim_job", "job_id"),
]
for index_name, table_name, column_name in indexes:
try:
self.conn.execute(f"CREATE INDEX {index_name} ON {table_name}({column_name})")
except Exception as e:
self.logger.warning(f"Could not create index {index_name}: {e}")
self.logger.info("Indexes created successfully!")
class DataQualityChecker:
"""Performs data quality checks and validation."""
def __init__(self, conn: duckdb.DuckDBPyConnection, logger: logging.Logger):
"""
Initialize data quality checker.
Args:
conn: DuckDB connection object.
logger: Logger instance for tracking operations.
"""
self.conn = conn
self.logger = logger
def run_all_checks(self) -> bool:
"""
Run all data quality checks.
Returns:
True if all checks pass, False otherwise.
"""
self.logger.info("Running data quality checks...")
try:
self._check_table_counts()
self._check_fact_table_integrity()
return True
except Exception as e:
self.logger.error(f"Error in data quality checks: {e}")
return False
def _check_table_counts(self) -> None:
"""Check row counts for all tables."""
tables_query = """
SELECT table_name, estimated_size as row_count
FROM duckdb_tables()
WHERE schema_name = 'main'
ORDER BY table_name
"""
tables_info = self.conn.execute(tables_query).fetchall()
self.logger.info("Table row counts:")
for table_name, _ in tables_info:
if not table_name.startswith('raw_'):
count = self.conn.execute(f"SELECT COUNT(*) FROM {table_name}").fetchone()[0]
self.logger.info(f" {table_name}: {count:,} records")
def _check_fact_table_integrity(self) -> None:
"""Check fact table for duplicates and integrity."""
dup_check = self.conn.execute("""
SELECT COUNT(*) as total_records,
COUNT(DISTINCT record_id) as unique_records
FROM fact_h1b_applications
""").fetchone()
self.logger.info(f"Fact table: {dup_check[0]:,} total records, {dup_check[1]:,} unique records")
class DatabasePersistence:
"""Handles database persistence operations."""
def __init__(self, logger: logging.Logger):
"""
Initialize database persistence handler.
Args:
logger: Logger instance for tracking operations.
"""
self.logger = logger
def save_to_persistent_database(self, source_conn: duckdb.DuckDBPyConnection,
target_path: str) -> None:
"""
Save tables to a persistent database file.
Args:
source_conn: Source database connection.
target_path: Path to the target persistent database file.
"""
self.logger.info(f"Saving to persistent database: {target_path}")
# Remove existing file if it exists
if os.path.exists(target_path):
os.remove(target_path)
self.logger.info(f"Removed existing database file: {target_path}")
# Create persistent database connection
with duckdb.connect(target_path) as persistent_conn:
# Get tables to copy (exclude temporary tables)
tables_to_keep = source_conn.execute("""
SELECT table_name
FROM information_schema.tables
WHERE table_name NOT LIKE 'raw_%'
AND table_name NOT IN ('combined_data', 'cleaned_data')
AND table_schema = 'main'
""").fetchall()
# Copy tables
for table_info in tables_to_keep:
table_name = table_info[0]
df = source_conn.execute(f"SELECT * FROM {table_name}").df()
persistent_conn.execute(f"CREATE TABLE {table_name} AS SELECT * FROM df")
self.logger.info(f"Copied table {table_name} to persistent database")
self.logger.info(f"Persistent database saved to: {target_path}")
# Configuration and Constants
class Config:
"""Configuration class for the H1B data pipeline."""
CSV_FILES = [
'./data/TRK_13139_FY2021.csv',
'./data/TRK_13139_FY2022.csv',
'./data/TRK_13139_FY2023.csv',
'./data/TRK_13139_FY2024_single_reg.csv',
'./data/TRK_13139_FY2024_multi_reg.csv'
]
XLSX_FILE = './data/TRK_13139_I129_H1B_Registrations_FY21_FY24_FOIA_FIN.xlsx'
PERSISTENT_DB_PATH = './data/h1bs_analytics.duckdb'
MISSING_DATA_THRESHOLD = 0.99
def main():
"""Main execution function for the H1B data pipeline."""
print("Starting H1B Data Analytics Pipeline...")
print("All imports successful!")
# Check memory usage
MemoryManager.check_memory_usage()
# Validate input files
existing_files, missing_files = FileValidator.validate_files(Config.CSV_FILES)
if missing_files:
print(f"Warning: {len(missing_files)} files are missing")
# Run the pipeline
try:
with H1BDataPipeline() as pipeline:
# Load data
data_loader = DataLoader(pipeline.conn, pipeline.logger)
data_loader.load_csv_files(existing_files)
# Transform data
transformer = DataTransformer(pipeline.conn, pipeline.logger)
transformer.create_combined_table()
kept_columns = transformer.remove_columns_with_missing_data(
'combined_data', Config.MISSING_DATA_THRESHOLD
)
print(f"Kept {len(kept_columns)} columns after cleaning")
# Create dimensional model
modeler = DimensionalModeler(pipeline.conn, pipeline.logger)
modeler.create_all_dimensions()
modeler.create_fact_table()
modeler.create_lookup_tables()
# Optimize database
optimizer = DatabaseOptimizer(pipeline.conn, pipeline.logger)
optimizer.create_indexes()
# Run quality checks
quality_checker = DataQualityChecker(pipeline.conn, pipeline.logger)
quality_checker.run_all_checks()
# Save to persistent database
persistence = DatabasePersistence(pipeline.logger)
persistence.save_to_persistent_database(
pipeline.conn, Config.PERSISTENT_DB_PATH
)
# Final memory check
MemoryManager.check_memory_usage()
MemoryManager.clear_memory()
print("Pipeline completed successfully!")
except Exception as e:
print(f"Pipeline failed with error: {e}")
traceback.print_exc()
if __name__ == "__main__":
main()