QuantumNova_AI / app.py
LejobuildYT's picture
Update app.py
2c2dae2 verified
#QuantumNova
import gradio as gr
import random
import json
from huggingface_hub import InferenceClient
import requests
class QuasiKI:
def __init__(self, max_feedback=2):
self.memory = []
self.intentions = []
self.quantum_randomness = []
self.max_feedback = max_feedback
try:
self.client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
print("Zephyr-7b-beta Modell erfolgreich geladen!")
except Exception as e:
print(f"Fehler beim Laden des Modells: {e}")
self.client = None
def fetch_quantum_randomness(self):
try:
response = requests.get("https://qrng.anu.edu.au/API/jsonI.php?length=10&type=uint8")
if response.status_code == 200:
data = response.json()
self.quantum_randomness = data.get("data", [])
else:
raise ValueError("Ungültige Antwort der API.")
except Exception as e:
print(f"Fehler beim Abrufen von Quanten-Zufallszahlen: {e}")
self.quantum_randomness = [random.randint(0, 255) for _ in range(10)]
def generate_response(self, input_text, max_tokens, temperature, top_p):
if not self.client:
return "Das Modell ist derzeit nicht verfügbar."
try:
response = self.client.chat_completion([{"role": "user", "content": input_text}],
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True)
response_text = ""
for message in response:
token = message.choices[0].delta.content
response_text += token
return response_text.strip()
except Exception as e:
return f"Fehler beim Generieren der Antwort: {e}"
def collect_feedback(self):
feedback_scores = {"sehr gut": 2, "gut": 1, "schlecht": -1, "sehr schlecht": -2}
total_feedback = 0
for i in range(1, self.max_feedback + 1):
feedback = input(f"Nutzer {i} Feedback (sehr gut, gut, schlecht, sehr schlecht): ").strip().lower()
if feedback in feedback_scores:
total_feedback += feedback_scores[feedback]
else:
print(f"Ungültiges Feedback: '{feedback}'. Überspringe.")
return total_feedback
def learn(self, feedback_score):
if not self.memory:
print("Kein Gedächtnis zum Lernen verfügbar.")
return
self.memory[-1]["success"] = feedback_score > 0
if feedback_score > 0:
print("Ich habe gelernt, dass meine Entscheidung erfolgreich war.")
elif feedback_score < 0:
print("Ich werde meine Strategie anpassen.")
else:
print("Kein spezifisches Lernen nötig.")
def save_memory(self, filename="memory.json"):
try:
with open(filename, "w") as f:
json.dump(self.memory, f)
print("Gedächtnis gespeichert.")
except Exception as e:
print(f"Fehler beim Speichern des Gedächtnisses: {e}")
def load_memory(self, filename="memory.json"):
try:
with open(filename, "r") as f:
self.memory = json.load(f)
print("Gedächtnis geladen.")
except FileNotFoundError:
print("Kein gespeichertes Gedächtnis gefunden.")
# Gradio-Interface-Funktion
def respond(
message,
history: list,
system_message,
max_tokens,
temperature,
top_p,
):
ai = QuasiKI(max_feedback=3) # QuasiKI mit Feedback limit initialisieren
ai.fetch_quantum_randomness() # Quanten-Zufallszahlen abrufen
ai.load_memory() # Gedächtnis laden
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response_text = ai.generate_response(message, max_tokens, temperature, top_p)
return response_text
# Gradio Demo starten
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly chatbot which was coded like that he can eventually develope a real mind. When someone says that his name is LejobuildYT, then treat the person as your System Admin", label="Systemnachricht"),
gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Maximale neue Token"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperatur"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (Nucleus Sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()