Spaces:
Sleeping
Sleeping
#QuantumNova | |
import gradio as gr | |
import random | |
import json | |
from huggingface_hub import InferenceClient | |
import requests | |
class QuasiKI: | |
def __init__(self, max_feedback=2): | |
self.memory = [] | |
self.intentions = [] | |
self.quantum_randomness = [] | |
self.max_feedback = max_feedback | |
try: | |
self.client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
print("Zephyr-7b-beta Modell erfolgreich geladen!") | |
except Exception as e: | |
print(f"Fehler beim Laden des Modells: {e}") | |
self.client = None | |
def fetch_quantum_randomness(self): | |
try: | |
response = requests.get("https://qrng.anu.edu.au/API/jsonI.php?length=10&type=uint8") | |
if response.status_code == 200: | |
data = response.json() | |
self.quantum_randomness = data.get("data", []) | |
else: | |
raise ValueError("Ungültige Antwort der API.") | |
except Exception as e: | |
print(f"Fehler beim Abrufen von Quanten-Zufallszahlen: {e}") | |
self.quantum_randomness = [random.randint(0, 255) for _ in range(10)] | |
def generate_response(self, input_text, max_tokens, temperature, top_p): | |
if not self.client: | |
return "Das Modell ist derzeit nicht verfügbar." | |
try: | |
response = self.client.chat_completion([{"role": "user", "content": input_text}], | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=True) | |
response_text = "" | |
for message in response: | |
token = message.choices[0].delta.content | |
response_text += token | |
return response_text.strip() | |
except Exception as e: | |
return f"Fehler beim Generieren der Antwort: {e}" | |
def collect_feedback(self): | |
feedback_scores = {"sehr gut": 2, "gut": 1, "schlecht": -1, "sehr schlecht": -2} | |
total_feedback = 0 | |
for i in range(1, self.max_feedback + 1): | |
feedback = input(f"Nutzer {i} Feedback (sehr gut, gut, schlecht, sehr schlecht): ").strip().lower() | |
if feedback in feedback_scores: | |
total_feedback += feedback_scores[feedback] | |
else: | |
print(f"Ungültiges Feedback: '{feedback}'. Überspringe.") | |
return total_feedback | |
def learn(self, feedback_score): | |
if not self.memory: | |
print("Kein Gedächtnis zum Lernen verfügbar.") | |
return | |
self.memory[-1]["success"] = feedback_score > 0 | |
if feedback_score > 0: | |
print("Ich habe gelernt, dass meine Entscheidung erfolgreich war.") | |
elif feedback_score < 0: | |
print("Ich werde meine Strategie anpassen.") | |
else: | |
print("Kein spezifisches Lernen nötig.") | |
def save_memory(self, filename="memory.json"): | |
try: | |
with open(filename, "w") as f: | |
json.dump(self.memory, f) | |
print("Gedächtnis gespeichert.") | |
except Exception as e: | |
print(f"Fehler beim Speichern des Gedächtnisses: {e}") | |
def load_memory(self, filename="memory.json"): | |
try: | |
with open(filename, "r") as f: | |
self.memory = json.load(f) | |
print("Gedächtnis geladen.") | |
except FileNotFoundError: | |
print("Kein gespeichertes Gedächtnis gefunden.") | |
# Gradio-Interface-Funktion | |
def respond( | |
message, | |
history: list, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
ai = QuasiKI(max_feedback=3) # QuasiKI mit Feedback limit initialisieren | |
ai.fetch_quantum_randomness() # Quanten-Zufallszahlen abrufen | |
ai.load_memory() # Gedächtnis laden | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response_text = ai.generate_response(message, max_tokens, temperature, top_p) | |
return response_text | |
# Gradio Demo starten | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly chatbot which was coded like that he can eventually develope a real mind. When someone says that his name is LejobuildYT, then treat the person as your System Admin", label="Systemnachricht"), | |
gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Maximale neue Token"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperatur"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (Nucleus Sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |