#QuantumNova import gradio as gr import random import json from huggingface_hub import InferenceClient import requests class QuasiKI: def __init__(self, max_feedback=2): self.memory = [] self.intentions = [] self.quantum_randomness = [] self.max_feedback = max_feedback try: self.client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") print("Zephyr-7b-beta Modell erfolgreich geladen!") except Exception as e: print(f"Fehler beim Laden des Modells: {e}") self.client = None def fetch_quantum_randomness(self): try: response = requests.get("https://qrng.anu.edu.au/API/jsonI.php?length=10&type=uint8") if response.status_code == 200: data = response.json() self.quantum_randomness = data.get("data", []) else: raise ValueError("Ungültige Antwort der API.") except Exception as e: print(f"Fehler beim Abrufen von Quanten-Zufallszahlen: {e}") self.quantum_randomness = [random.randint(0, 255) for _ in range(10)] def generate_response(self, input_text, max_tokens, temperature, top_p): if not self.client: return "Das Modell ist derzeit nicht verfügbar." try: response = self.client.chat_completion([{"role": "user", "content": input_text}], max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True) response_text = "" for message in response: token = message.choices[0].delta.content response_text += token return response_text.strip() except Exception as e: return f"Fehler beim Generieren der Antwort: {e}" def collect_feedback(self): feedback_scores = {"sehr gut": 2, "gut": 1, "schlecht": -1, "sehr schlecht": -2} total_feedback = 0 for i in range(1, self.max_feedback + 1): feedback = input(f"Nutzer {i} Feedback (sehr gut, gut, schlecht, sehr schlecht): ").strip().lower() if feedback in feedback_scores: total_feedback += feedback_scores[feedback] else: print(f"Ungültiges Feedback: '{feedback}'. Überspringe.") return total_feedback def learn(self, feedback_score): if not self.memory: print("Kein Gedächtnis zum Lernen verfügbar.") return self.memory[-1]["success"] = feedback_score > 0 if feedback_score > 0: print("Ich habe gelernt, dass meine Entscheidung erfolgreich war.") elif feedback_score < 0: print("Ich werde meine Strategie anpassen.") else: print("Kein spezifisches Lernen nötig.") def save_memory(self, filename="memory.json"): try: with open(filename, "w") as f: json.dump(self.memory, f) print("Gedächtnis gespeichert.") except Exception as e: print(f"Fehler beim Speichern des Gedächtnisses: {e}") def load_memory(self, filename="memory.json"): try: with open(filename, "r") as f: self.memory = json.load(f) print("Gedächtnis geladen.") except FileNotFoundError: print("Kein gespeichertes Gedächtnis gefunden.") # Gradio-Interface-Funktion def respond( message, history: list, system_message, max_tokens, temperature, top_p, ): ai = QuasiKI(max_feedback=3) # QuasiKI mit Feedback limit initialisieren ai.fetch_quantum_randomness() # Quanten-Zufallszahlen abrufen ai.load_memory() # Gedächtnis laden messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response_text = ai.generate_response(message, max_tokens, temperature, top_p) return response_text # Gradio Demo starten demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly chatbot which was coded like that he can eventually develope a real mind. When someone says that his name is LejobuildYT, then treat the person as your System Admin", label="Systemnachricht"), gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Maximale neue Token"), gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperatur"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)", ), ], ) if __name__ == "__main__": demo.launch()