Spaces:
Runtime error
Runtime error
import shutil | |
import cv2 | |
import mediapipe as mp | |
from werkzeug.utils import secure_filename | |
import tensorflow as tf | |
import os | |
from flask import Flask, jsonify, request, flash, redirect, url_for | |
from pyngrok import ngrok | |
from fastapi import FastAPI, HTTPException, File, UploadFile, Request | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.responses import JSONResponse | |
from pydantic import BaseModel | |
import subprocess | |
from hairstyle_recommendation import HairstyleRecommendation | |
import requests | |
# A FUCKING PI | |
app = FastAPI() | |
API_URL = "https://api-inference.huggingface.co/models/rizvandwiki/gender-classification-2" | |
headers = {"Authorization": "Bearer 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"} | |
public_url = "https://lambang0902-test-space.hf.space" | |
app.mount("/static", StaticFiles(directory="static"), name="static") | |
# Tempat deklarasi variabel-variabel penting | |
filepath = "" | |
list_class = ['Diamond','Oblong','Oval','Round','Square','Triangle'] | |
list_folder = ['Training', 'Testing'] | |
recommendation = HairstyleRecommendation() | |
face_crop_img = True | |
face_landmark_img = True | |
landmark_extraction_img = True | |
#----------------------------------------------------- | |
#----------------------------------------------------- | |
# Tempat deklarasi model dan sejenisnya | |
selected_model = tf.keras.models.load_model(f'models/fc_model_1.h5', compile=False) | |
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml') | |
mp_drawing = mp.solutions.drawing_utils | |
mp_face_mesh = mp.solutions.face_mesh | |
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1) | |
# #----------------------------------------------------- | |
# #----------------------------------------------------- | |
# Tempat setting server | |
UPLOAD_FOLDER = './upload' | |
UPLOAD_MODEL = './models' | |
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg','zip','h5'} | |
# app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER | |
# app.config['UPLOAD_MODEL'] = UPLOAD_MODEL | |
# app.config['MAX_CONTENT_LENGTH'] = 500 * 1024 * 1024 # 500 MB | |
# #----------------------------------------------------- | |
# | |
from file_processing import FileProcess | |
from get_load_data import GetLoadData | |
from data_preprocess import DataProcessing | |
from train_pred import TrainPred | |
#----------------------------------------------------- | |
data_processor = DataProcessing() | |
data_train_pred = TrainPred() | |
def get_gender(filename): | |
with open(filename, "rb") as f: | |
data = f.read() | |
response = requests.post(API_URL, headers=headers, data=data) | |
return response.json() | |
import random | |
def preprocessing(filepath): | |
folder_path = './static/temporary' | |
shutil.rmtree(folder_path) | |
os.mkdir(folder_path) | |
data_processor.detect_landmark(data_processor.face_cropping_pred(filepath)) | |
# data_processor.enhance_contrast_histeq(data_processor.face_cropping_pred(filepath)) | |
files = os.listdir(folder_path) | |
index = 0 | |
for file_name in files: | |
file_ext = os.path.splitext(file_name)[1] | |
new_file_name = str(index) + "_" + str(random.randint(1, 100000)) + file_ext | |
os.rename(os.path.join(folder_path, file_name), os.path.join(folder_path, new_file_name)) | |
index += 1 | |
print("Tungu sampai selesaiii") | |
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.) | |
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.) | |
#----------------------------------------------------- | |
# Fungsi untuk menjalankan ngrok | |
def run_ngrok(): | |
try: | |
# Jalankan ngrok dan simpan prosesnya | |
ngrok_process = subprocess.Popen(['ngrok', 'http', '8000']) | |
return ngrok_process | |
except Exception as e: | |
print(f"Error running ngrok: {e}") | |
async def root(): | |
# Dapatkan URL publik dari ngrok | |
return {"message": "Server berfungsi ya ges ya"} | |
# ------------------------------------------------------------------------- | |
# API UNTUK MELAKUKAN PROSES PREDIKSI | |
# ------------------------------------------------------------------------- | |
# Use a pipeline as a high-level helper | |
# from transformers import pipeline | |
# pipe = pipeline("image-classification", model="rizvandwiki/gender-classification-2") | |
async def upload_file(picture: UploadFile): | |
file_extension = picture.filename.split('.')[-1].lower() | |
if file_extension not in ALLOWED_EXTENSIONS: | |
raise HTTPException(status_code=400, detail='Invalid file extension') | |
os.makedirs(UPLOAD_FOLDER, exist_ok=True) | |
file_path = os.path.join(UPLOAD_FOLDER, secure_filename(picture.filename)) | |
with open(file_path, 'wb') as f: | |
f.write(picture.file.read()) | |
try: | |
preprocessing(cv2.imread(file_path)) | |
except Exception as e: | |
os.remove(file_path) | |
raise HTTPException(status_code=500, detail=f'Error processing image: {str(e)}') | |
return JSONResponse(content={'message': 'File successfully uploaded'}, status_code=200) | |
def get_images(): | |
folder_path = "./static/temporary" | |
files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))] | |
urls = [] | |
# Image preprocessed url | |
for i in range(0, 4): | |
url = f'{public_url}/static/temporary/{files[i]}' | |
urls.append(url) | |
# Face shape classification | |
bentuk, persentase = data_train_pred.prediction(selected_model) | |
# Gender classification | |
gender_classify = get_gender('./static/result_upload0.jpg') | |
output_gender = max(gender_classify, key=lambda x: x['score'])['label'] | |
print(output_gender) | |
# Hairstyle recommendation | |
recommended_styles, style_images, hairstyle_description = recommendation.get_recommendation(output_gender, bentuk[0]) | |
hairstyleImage = [f'{public_url}/static/hairstyle_image/{file}' for file in style_images] | |
response = {'urls': urls, | |
'bentuk_wajah': bentuk[0], | |
'persen': persentase, | |
'gender': output_gender, | |
'hair_style': recommended_styles, | |
'hair_image': hairstyleImage, | |
'hair_description' : hairstyle_description} | |
return response | |
# ------------------------------------------------------------------------- | |
# API UNTUK MELAKUKAN PROSES TRAINING | |
# ------------------------------------------------------------------------- | |
# Model pydantic untuk validasi body | |
# class TrainingParams(BaseModel): | |
# optimizer: str | |
# epoch: int | |
# batchSize: int | |
# @app.post('/upload/dataset', tags=["Training"]) | |
# async def upload_data(dataset: UploadFile): | |
# if dataset.filename == '': | |
# raise HTTPException(status_code=400, detail='No file selected for uploading') | |
# # Buat path lengkap untuk menyimpan file | |
# file_path = os.path.join(UPLOAD_FOLDER, dataset.filename) | |
# # Simpan file ke folder yang ditentukan | |
# with open(file_path, "wb") as file_object: | |
# file_object.write(dataset.file.read()) | |
# # Panggil fungsi untuk mengekstrak file jika perlu | |
# FileProcess.extract_zip(file_path) | |
# return {'message': 'File successfully uploaded'} | |
# @app.post('/set_params', tags=["Training"]) | |
# async def set_params(request: Request, params: TrainingParams): | |
# global optimizer, epoch, batch_size | |
# optimizer = params.optimizer | |
# epoch = params.epoch | |
# batch_size = params.batchSize | |
# response = {'message': 'Set parameter sukses'} | |
# return response | |
# @app.get('/get_info_data', tags=["Training"]) | |
# def get_info_prepro(): | |
# global optimizer, epoch, batch_size | |
# training_counts = GetLoadData.get_training_file_counts().json | |
# testing_counts = GetLoadData.get_testing_file_counts().json | |
# response = { | |
# "optimizer": optimizer, | |
# "epoch": epoch, | |
# "batch_size": batch_size, | |
# "training_counts": training_counts, | |
# "testing_counts": testing_counts | |
# } | |
# return response | |
# @app.get('/get_images_preprocess', tags=["Training"]) | |
# def get_random_images_crop(): | |
# images_face_landmark = GetLoadData.get_random_images(tahap="Face Landmark",public_url=public_url) | |
# images_face_extraction = GetLoadData.get_random_images(tahap="landmark Extraction", public_url=public_url) | |
# response = { | |
# "face_landmark": images_face_landmark, | |
# "landmark_extraction": images_face_extraction | |
# } | |
# return response | |
# @app.get('/do_preprocessing', tags=["Training"]) | |
# async def do_preprocessing(): | |
# try: | |
# data_train_pred.do_pre1(test="") | |
# data_train_pred.do_pre2(test="") | |
# return {'message': 'Preprocessing sukses'} | |
# except Exception as e: | |
# # Tangani kesalahan dan kembalikan respons kesalahan | |
# error_message = f'Error during preprocessing: {str(e)}' | |
# raise HTTPException(status_code=500, detail=error_message) | |
# @app.get('/do_training', tags=["Training"]) | |
# def do_training(): | |
# global epoch | |
# folder = "" | |
# if (face_landmark_img == True and landmark_extraction_img == True): | |
# folder = "Landmark Extraction" | |
# elif (face_landmark_img == True and landmark_extraction_img == False): | |
# folder = "Face Landmark" | |
# # -------------------------------------------------------------- | |
# train_dataset_path = f"./static/dataset/{folder}/Training/" | |
# test_dataset_path = f"./static/dataset/{folder}/Testing/" | |
# train_image_df, test_image_df = GetLoadData.load_image_dataset(train_dataset_path, test_dataset_path) | |
# train_gen, test_gen = data_train_pred.data_configuration(train_image_df, test_image_df) | |
# model = data_train_pred.model_architecture() | |
# result = data_train_pred.train_model(model, train_gen, test_gen, epoch) | |
# # Mengambil nilai akurasi training dan validation dari objek result | |
# train_acc = result.history['accuracy'][-1] | |
# val_acc = result.history['val_accuracy'][-1] | |
# # Plot accuracy | |
# data_train_pred.plot_accuracy(result=result, epoch=epoch) | |
# acc_url = f'{public_url}/static/accuracy_plot.png' | |
# # Plot loss | |
# data_train_pred.plot_loss(result=result, epoch=epoch) | |
# loss_url = f'{public_url}/static/loss_plot.png' | |
# # Confusion Matrix | |
# data_train_pred.plot_confusion_matrix(model, test_gen) | |
# conf_url = f'{public_url}/static/confusion_matrix.png' | |
# return jsonify({'train_acc': train_acc, 'val_acc': val_acc, 'plot_acc': acc_url, 'plot_loss':loss_url,'conf':conf_url}) | |
# ------------------------------------------------------------------------- | |
# API UNTUK PEMILIHAN MODEL | |
# ------------------------------------------------------------------------- | |
# @app.post('/upload/model', tags=["Model"]) | |
# def upload_model(): | |
# if 'file' not in request.files: | |
# return {'message': 'No file part in the request'}, 400 | |
# file = request.files['file'] | |
# if file.filename == '': | |
# return {'message': 'No file selected for uploading'}, 400 | |
# if file and FileProcess.allowed_file(file.filename): | |
# filename = secure_filename(file.filename) | |
# filepath = os.path.join(app.config['UPLOAD_MODEL'], filename) | |
# file.save(filepath) | |
# return {'message': 'File successfully uploaded'} | |
# return {'message': 'File failed to uploaded'} | |
# @app.post('/selected_models') | |
# def select_models(index: int): | |
# global selected_model | |
# try: | |
# global selected_model | |
# selected_model = tf.keras.models.load_model(f'models/fc_model_{index}.h5') | |
# # Lakukan sesuatu dengan indeks yang diterima | |
# return {'message': 'Request berhasil diterima'} | |
# except Exception as e: | |
# raise HTTPException(status_code=500, detail=f'Error: {str(e)}') | |
if __name__ == '__main__': | |
import uvicorn | |
public_url = ngrok.connect(8080).public_url | |
print(f' * Running on {public_url}') | |
uvicorn.run(app, host="0.0.0.0", port=8080) | |
# app = FastAPI() | |