| # T-GATE | |
| [T-GATE](https://github.com/HaozheLiu-ST/T-GATE/tree/main) accelerates inference for [Stable Diffusion](../api/pipelines/stable_diffusion/overview), [PixArt](../api/pipelines/pixart), and [Latency Consistency Model](../api/pipelines/latent_consistency_models.md) pipelines by skipping the cross-attention calculation once it converges. This method doesn't require any additional training and it can speed up inference from 10-50%. T-GATE is also compatible with other optimization methods like [DeepCache](./deepcache). | |
| Before you begin, make sure you install T-GATE. | |
| ```bash | |
| pip install tgate | |
| pip install -U torch diffusers transformers accelerate DeepCache | |
| ``` | |
| To use T-GATE with a pipeline, you need to use its corresponding loader. | |
| | Pipeline | T-GATE Loader | | |
| |---|---| | |
| | PixArt | TgatePixArtLoader | | |
| | Stable Diffusion XL | TgateSDXLLoader | | |
| | Stable Diffusion XL + DeepCache | TgateSDXLDeepCacheLoader | | |
| | Stable Diffusion | TgateSDLoader | | |
| | Stable Diffusion + DeepCache | TgateSDDeepCacheLoader | | |
| Next, create a `TgateLoader` with a pipeline, the gate step (the time step to stop calculating the cross attention), and the number of inference steps. Then call the `tgate` method on the pipeline with a prompt, gate step, and the number of inference steps. | |
| Let's see how to enable this for several different pipelines. | |
| <hfoptions id="pipelines"> | |
| <hfoption id="PixArt"> | |
| Accelerate `PixArtAlphaPipeline` with T-GATE: | |
| ```py | |
| import torch | |
| from diffusers import PixArtAlphaPipeline | |
| from tgate import TgatePixArtLoader | |
| pipe = PixArtAlphaPipeline.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", torch_dtype=torch.float16) | |
| gate_step = 8 | |
| inference_step = 25 | |
| pipe = TgatePixArtLoader( | |
| pipe, | |
| gate_step=gate_step, | |
| num_inference_steps=inference_step, | |
| ).to("cuda") | |
| image = pipe.tgate( | |
| "An alpaca made of colorful building blocks, cyberpunk.", | |
| gate_step=gate_step, | |
| num_inference_steps=inference_step, | |
| ).images[0] | |
| ``` | |
| </hfoption> | |
| <hfoption id="Stable Diffusion XL"> | |
| Accelerate `StableDiffusionXLPipeline` with T-GATE: | |
| ```py | |
| import torch | |
| from diffusers import StableDiffusionXLPipeline | |
| from diffusers import DPMSolverMultistepScheduler | |
| from tgate import TgateSDXLLoader | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", | |
| torch_dtype=torch.float16, | |
| variant="fp16", | |
| use_safetensors=True, | |
| ) | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
| gate_step = 10 | |
| inference_step = 25 | |
| pipe = TgateSDXLLoader( | |
| pipe, | |
| gate_step=gate_step, | |
| num_inference_steps=inference_step, | |
| ).to("cuda") | |
| image = pipe.tgate( | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.", | |
| gate_step=gate_step, | |
| num_inference_steps=inference_step | |
| ).images[0] | |
| ``` | |
| </hfoption> | |
| <hfoption id="StableDiffusionXL with DeepCache"> | |
| Accelerate `StableDiffusionXLPipeline` with [DeepCache](https://github.com/horseee/DeepCache) and T-GATE: | |
| ```py | |
| import torch | |
| from diffusers import StableDiffusionXLPipeline | |
| from diffusers import DPMSolverMultistepScheduler | |
| from tgate import TgateSDXLDeepCacheLoader | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", | |
| torch_dtype=torch.float16, | |
| variant="fp16", | |
| use_safetensors=True, | |
| ) | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
| gate_step = 10 | |
| inference_step = 25 | |
| pipe = TgateSDXLDeepCacheLoader( | |
| pipe, | |
| cache_interval=3, | |
| cache_branch_id=0, | |
| ).to("cuda") | |
| image = pipe.tgate( | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.", | |
| gate_step=gate_step, | |
| num_inference_steps=inference_step | |
| ).images[0] | |
| ``` | |
| </hfoption> | |
| <hfoption id="Latent Consistency Model"> | |
| Accelerate `latent-consistency/lcm-sdxl` with T-GATE: | |
| ```py | |
| import torch | |
| from diffusers import StableDiffusionXLPipeline | |
| from diffusers import UNet2DConditionModel, LCMScheduler | |
| from diffusers import DPMSolverMultistepScheduler | |
| from tgate import TgateSDXLLoader | |
| unet = UNet2DConditionModel.from_pretrained( | |
| "latent-consistency/lcm-sdxl", | |
| torch_dtype=torch.float16, | |
| variant="fp16", | |
| ) | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", | |
| unet=unet, | |
| torch_dtype=torch.float16, | |
| variant="fp16", | |
| ) | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| gate_step = 1 | |
| inference_step = 4 | |
| pipe = TgateSDXLLoader( | |
| pipe, | |
| gate_step=gate_step, | |
| num_inference_steps=inference_step, | |
| lcm=True | |
| ).to("cuda") | |
| image = pipe.tgate( | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k.", | |
| gate_step=gate_step, | |
| num_inference_steps=inference_step | |
| ).images[0] | |
| ``` | |
| </hfoption> | |
| </hfoptions> | |
| T-GATE also supports [`StableDiffusionPipeline`] and [PixArt-alpha/PixArt-LCM-XL-2-1024-MS](https://hf.co/PixArt-alpha/PixArt-LCM-XL-2-1024-MS). | |
| ## Benchmarks | |
| | Model | MACs | Param | Latency | Zero-shot 10K-FID on MS-COCO | | |
| |-----------------------|----------|-----------|---------|---------------------------| | |
| | SD-1.5 | 16.938T | 859.520M | 7.032s | 23.927 | | |
| | SD-1.5 w/ T-GATE | 9.875T | 815.557M | 4.313s | 20.789 | | |
| | SD-2.1 | 38.041T | 865.785M | 16.121s | 22.609 | | |
| | SD-2.1 w/ T-GATE | 22.208T | 815.433 M | 9.878s | 19.940 | | |
| | SD-XL | 149.438T | 2.570B | 53.187s | 24.628 | | |
| | SD-XL w/ T-GATE | 84.438T | 2.024B | 27.932s | 22.738 | | |
| | Pixart-Alpha | 107.031T | 611.350M | 61.502s | 38.669 | | |
| | Pixart-Alpha w/ T-GATE | 65.318T | 462.585M | 37.867s | 35.825 | | |
| | DeepCache (SD-XL) | 57.888T | - | 19.931s | 23.755 | | |
| | DeepCache w/ T-GATE | 43.868T | - | 14.666s | 23.999 | | |
| | LCM (SD-XL) | 11.955T | 2.570B | 3.805s | 25.044 | | |
| | LCM w/ T-GATE | 11.171T | 2.024B | 3.533s | 25.028 | | |
| | LCM (Pixart-Alpha) | 8.563T | 611.350M | 4.733s | 36.086 | | |
| | LCM w/ T-GATE | 7.623T | 462.585M | 4.543s | 37.048 | | |
| The latency is tested on an NVIDIA 1080TI, MACs and Params are calculated with [calflops](https://github.com/MrYxJ/calculate-flops.pytorch), and the FID is calculated with [PytorchFID](https://github.com/mseitzer/pytorch-fid). | |