Spaces:
Runtime error
Runtime error
from huggingface_hub import hf_hub_download | |
from ultralytics import YOLO | |
from supervision import Detections | |
import cv2 | |
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt") | |
model = YOLO(model_path) | |
def detect_faces(image): | |
print(type(image)) | |
output = model(image) | |
results = Detections.from_ultralytics(output[0]) | |
im = np.array(image) | |
for i in results: | |
im = cv2.rectangle(im, (int(i[0][0]),int(i[0][1])), (int(i[0][2]),int(i[0][3])), (255,0,0), 2) | |
image_np = np.array(image) | |
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) | |
face_cascade_face_1 = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") | |
face_cascade_face_2 = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_alt.xml") | |
face_cascade_face_3 = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_alt2.xml") | |
faces1 = face_cascade_face_1.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5)) | |
faces2 = face_cascade_face_2.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5)) | |
faces3 = face_cascade_face_3.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5)) | |
if len(faces1) <= len(faces2): | |
if len(faces2) < len(faces3): | |
faces = faces3 | |
else: | |
faces = faces2 | |
else: | |
faces = faces1 | |
print(len(faces1),len(faces2),len(faces3)) | |
face_cascade_eye = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_eye.xml") | |
eyes = face_cascade_eye.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5)) | |
for (x, y, w, h) in faces: | |
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2) | |
for (x, y, w, h) in eyes: | |
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 0, 255), 2) | |
return (image_np,im) | |
interface = gr.Interface( | |
fn=detect_faces, | |
inputs=gr.Image(label='Upload Image'), | |
outputs=[gr.Image(label='Original'),gr.Image(label='Deep learning')], | |
title="Face Detection Deep Learning", | |
description="Upload an image, and the model will detect faces and draw bounding boxes around them.", | |
) | |
interface.launch() |