Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,21 +10,44 @@ model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename
|
|
10 |
model = YOLO(model_path)
|
11 |
|
12 |
def detect_faces(image):
|
13 |
-
|
|
|
|
|
14 |
output = model(image)
|
15 |
results = Detections.from_ultralytics(output[0])
|
16 |
|
17 |
im = np.array(image)
|
18 |
for i in results:
|
19 |
-
im = cv2.rectangle(im, (int(i[0][0]),int(i[0][1])), (int(i[0][2]),int(i[0][3])), (0,0
|
20 |
|
21 |
image_np = np.array(image)
|
22 |
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
for (x, y, w, h) in faces:
|
26 |
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
27 |
-
|
|
|
|
|
28 |
return (image_np,im)
|
29 |
|
30 |
interface = gr.Interface(
|
|
|
10 |
model = YOLO(model_path)
|
11 |
|
12 |
def detect_faces(image):
|
13 |
+
|
14 |
+
print(type(image))
|
15 |
+
|
16 |
output = model(image)
|
17 |
results = Detections.from_ultralytics(output[0])
|
18 |
|
19 |
im = np.array(image)
|
20 |
for i in results:
|
21 |
+
im = cv2.rectangle(im, (int(i[0][0]),int(i[0][1])), (int(i[0][2]),int(i[0][3])), (255,0,0), 2)
|
22 |
|
23 |
image_np = np.array(image)
|
24 |
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
25 |
+
|
26 |
+
face_cascade_face_1 = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
|
27 |
+
face_cascade_face_2 = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_alt.xml")
|
28 |
+
face_cascade_face_3 = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_alt2.xml")
|
29 |
+
|
30 |
+
faces1 = face_cascade_face_1.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5))
|
31 |
+
faces2 = face_cascade_face_2.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5))
|
32 |
+
faces3 = face_cascade_face_3.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5))
|
33 |
+
|
34 |
+
if len(faces1) <= len(faces2):
|
35 |
+
if len(faces2) < len(faces3):
|
36 |
+
faces = faces3
|
37 |
+
else:
|
38 |
+
faces = faces2
|
39 |
+
else:
|
40 |
+
faces = faces1
|
41 |
+
print(len(faces1),len(faces2),len(faces3))
|
42 |
+
|
43 |
+
face_cascade_eye = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_eye.xml")
|
44 |
+
eyes = face_cascade_eye.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(5, 5))
|
45 |
+
|
46 |
for (x, y, w, h) in faces:
|
47 |
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
48 |
+
for (x, y, w, h) in eyes:
|
49 |
+
cv2.rectangle(image_np, (x, y), (x+w, y+h), (0, 0, 255), 2)
|
50 |
+
|
51 |
return (image_np,im)
|
52 |
|
53 |
interface = gr.Interface(
|