Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import functools | |
| import pickle | |
| import warnings | |
| from collections import OrderedDict | |
| import numpy as np | |
| import torch | |
| import torch.distributed as dist | |
| from mmengine.dist import get_dist_info | |
| from torch._utils import (_flatten_dense_tensors, _take_tensors, | |
| _unflatten_dense_tensors) | |
| def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1): | |
| if bucket_size_mb > 0: | |
| bucket_size_bytes = bucket_size_mb * 1024 * 1024 | |
| buckets = _take_tensors(tensors, bucket_size_bytes) | |
| else: | |
| buckets = OrderedDict() | |
| for tensor in tensors: | |
| tp = tensor.type() | |
| if tp not in buckets: | |
| buckets[tp] = [] | |
| buckets[tp].append(tensor) | |
| buckets = buckets.values() | |
| for bucket in buckets: | |
| flat_tensors = _flatten_dense_tensors(bucket) | |
| dist.all_reduce(flat_tensors) | |
| flat_tensors.div_(world_size) | |
| for tensor, synced in zip( | |
| bucket, _unflatten_dense_tensors(flat_tensors, bucket)): | |
| tensor.copy_(synced) | |
| def allreduce_grads(params, coalesce=True, bucket_size_mb=-1): | |
| """Allreduce gradients. | |
| Args: | |
| params (list[torch.Parameters]): List of parameters of a model | |
| coalesce (bool, optional): Whether allreduce parameters as a whole. | |
| Defaults to True. | |
| bucket_size_mb (int, optional): Size of bucket, the unit is MB. | |
| Defaults to -1. | |
| """ | |
| grads = [ | |
| param.grad.data for param in params | |
| if param.requires_grad and param.grad is not None | |
| ] | |
| world_size = dist.get_world_size() | |
| if coalesce: | |
| _allreduce_coalesced(grads, world_size, bucket_size_mb) | |
| else: | |
| for tensor in grads: | |
| dist.all_reduce(tensor.div_(world_size)) | |
| def reduce_mean(tensor): | |
| """"Obtain the mean of tensor on different GPUs.""" | |
| if not (dist.is_available() and dist.is_initialized()): | |
| return tensor | |
| tensor = tensor.clone() | |
| dist.all_reduce(tensor.div_(dist.get_world_size()), op=dist.ReduceOp.SUM) | |
| return tensor | |
| def obj2tensor(pyobj, device='cuda'): | |
| """Serialize picklable python object to tensor.""" | |
| storage = torch.ByteStorage.from_buffer(pickle.dumps(pyobj)) | |
| return torch.ByteTensor(storage).to(device=device) | |
| def tensor2obj(tensor): | |
| """Deserialize tensor to picklable python object.""" | |
| return pickle.loads(tensor.cpu().numpy().tobytes()) | |
| def _get_global_gloo_group(): | |
| """Return a process group based on gloo backend, containing all the ranks | |
| The result is cached.""" | |
| if dist.get_backend() == 'nccl': | |
| return dist.new_group(backend='gloo') | |
| else: | |
| return dist.group.WORLD | |
| def all_reduce_dict(py_dict, op='sum', group=None, to_float=True): | |
| """Apply all reduce function for python dict object. | |
| The code is modified from https://github.com/Megvii- | |
| BaseDetection/YOLOX/blob/main/yolox/utils/allreduce_norm.py. | |
| NOTE: make sure that py_dict in different ranks has the same keys and | |
| the values should be in the same shape. Currently only supports | |
| nccl backend. | |
| Args: | |
| py_dict (dict): Dict to be applied all reduce op. | |
| op (str): Operator, could be 'sum' or 'mean'. Default: 'sum' | |
| group (:obj:`torch.distributed.group`, optional): Distributed group, | |
| Default: None. | |
| to_float (bool): Whether to convert all values of dict to float. | |
| Default: True. | |
| Returns: | |
| OrderedDict: reduced python dict object. | |
| """ | |
| warnings.warn( | |
| 'group` is deprecated. Currently only supports NCCL backend.') | |
| _, world_size = get_dist_info() | |
| if world_size == 1: | |
| return py_dict | |
| # all reduce logic across different devices. | |
| py_key = list(py_dict.keys()) | |
| if not isinstance(py_dict, OrderedDict): | |
| py_key_tensor = obj2tensor(py_key) | |
| dist.broadcast(py_key_tensor, src=0) | |
| py_key = tensor2obj(py_key_tensor) | |
| tensor_shapes = [py_dict[k].shape for k in py_key] | |
| tensor_numels = [py_dict[k].numel() for k in py_key] | |
| if to_float: | |
| warnings.warn('Note: the "to_float" is True, you need to ' | |
| 'ensure that the behavior is reasonable.') | |
| flatten_tensor = torch.cat( | |
| [py_dict[k].flatten().float() for k in py_key]) | |
| else: | |
| flatten_tensor = torch.cat([py_dict[k].flatten() for k in py_key]) | |
| dist.all_reduce(flatten_tensor, op=dist.ReduceOp.SUM) | |
| if op == 'mean': | |
| flatten_tensor /= world_size | |
| split_tensors = [ | |
| x.reshape(shape) for x, shape in zip( | |
| torch.split(flatten_tensor, tensor_numels), tensor_shapes) | |
| ] | |
| out_dict = {k: v for k, v in zip(py_key, split_tensors)} | |
| if isinstance(py_dict, OrderedDict): | |
| out_dict = OrderedDict(out_dict) | |
| return out_dict | |
| def sync_random_seed(seed=None, device='cuda'): | |
| """Make sure different ranks share the same seed. | |
| All workers must call this function, otherwise it will deadlock. | |
| This method is generally used in `DistributedSampler`, | |
| because the seed should be identical across all processes | |
| in the distributed group. | |
| In distributed sampling, different ranks should sample non-overlapped | |
| data in the dataset. Therefore, this function is used to make sure that | |
| each rank shuffles the data indices in the same order based | |
| on the same seed. Then different ranks could use different indices | |
| to select non-overlapped data from the same data list. | |
| Args: | |
| seed (int, Optional): The seed. Default to None. | |
| device (str): The device where the seed will be put on. | |
| Default to 'cuda'. | |
| Returns: | |
| int: Seed to be used. | |
| """ | |
| if seed is None: | |
| seed = np.random.randint(2**31) | |
| assert isinstance(seed, int) | |
| rank, world_size = get_dist_info() | |
| if world_size == 1: | |
| return seed | |
| if rank == 0: | |
| random_num = torch.tensor(seed, dtype=torch.int32, device=device) | |
| else: | |
| random_num = torch.tensor(0, dtype=torch.int32, device=device) | |
| dist.broadcast(random_num, src=0) | |
| return random_num.item() | |