|
import gradio as gr |
|
import glob |
|
import torch |
|
from opencd.apis import OpenCDInferencer |
|
|
|
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' |
|
|
|
config_file = 'configs/TTP/ttp_sam_large_levircd_infer.py' |
|
checkpoint_file = 'ckpt/epoch_260.pth' |
|
|
|
|
|
mmcd_inferencer = OpenCDInferencer( |
|
model=config_file, |
|
weights=checkpoint_file, |
|
classes=['unchanged', 'changed'], |
|
palette=[[0, 0, 0], [255, 255, 255]], |
|
device=device |
|
) |
|
|
|
def infer(img1, img2): |
|
|
|
result = mmcd_inferencer([[img1, img2]], show=False, return_vis=True) |
|
visualization = result['visualization'] |
|
return visualization |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
""" |
|
# [Time Travelling Pixels: Bitemporal Features Integration with Foundation Model for Remote Sensing Image Change Detection](https://arxiv.org/abs/2312.16202) |
|
""") |
|
|
|
gr.Row() |
|
|
|
with gr.Row(): |
|
input_0 = gr.Image(label='Input Image1') |
|
input_1 = gr.Image(label='Input Image2') |
|
with gr.Row(): |
|
output_gt = gr.Image(label='Predicted Mask') |
|
btn = gr.Button("Detect") |
|
btn.click(infer, inputs=[input_0, input_1], outputs=[output_gt]) |
|
|
|
img1_files = glob.glob('samples/A/*.png') |
|
img2_files = [f.replace('A', 'B') for f in img1_files] |
|
input_files = [[x, y] for x, y in zip(img1_files, img2_files)] |
|
gr.Examples(input_files, fn=infer, inputs=[input_0, input_1], outputs=[output_gt], cache_examples=True) |
|
gr.Markdown( |
|
""" |
|
This is the demo of ["Time Travelling Pixels: Bitemporal Features Integration with Foundation Model for Remote Sensing Image Change Detection"](https://arxiv.org/abs/2312.16202). Seeing [Github](https://github.com/KyanChen/TTP) for more information! |
|
""") |
|
|
|
gr.Row() |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |