Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import numpy as np | |
| from mmcv.transforms import to_tensor | |
| from mmcv.transforms.base import BaseTransform | |
| from mmengine.structures import InstanceData, PixelData | |
| from mmdet.registry import TRANSFORMS | |
| from mmdet.structures import DetDataSample | |
| from mmdet.structures.bbox import BaseBoxes | |
| class PackDetInputs(BaseTransform): | |
| """Pack the inputs data for the detection / semantic segmentation / | |
| panoptic segmentation. | |
| The ``img_meta`` item is always populated. The contents of the | |
| ``img_meta`` dictionary depends on ``meta_keys``. By default this includes: | |
| - ``img_id``: id of the image | |
| - ``img_path``: path to the image file | |
| - ``ori_shape``: original shape of the image as a tuple (h, w) | |
| - ``img_shape``: shape of the image input to the network as a tuple \ | |
| (h, w). Note that images may be zero padded on the \ | |
| bottom/right if the batch tensor is larger than this shape. | |
| - ``scale_factor``: a float indicating the preprocessing scale | |
| - ``flip``: a boolean indicating if image flip transform was used | |
| - ``flip_direction``: the flipping direction | |
| Args: | |
| meta_keys (Sequence[str], optional): Meta keys to be converted to | |
| ``mmcv.DataContainer`` and collected in ``data[img_metas]``. | |
| Default: ``('img_id', 'img_path', 'ori_shape', 'img_shape', | |
| 'scale_factor', 'flip', 'flip_direction')`` | |
| """ | |
| mapping_table = { | |
| 'gt_bboxes': 'bboxes', | |
| 'gt_bboxes_labels': 'labels', | |
| 'gt_masks': 'masks' | |
| } | |
| def __init__(self, | |
| meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
| 'scale_factor', 'flip', 'flip_direction')): | |
| self.meta_keys = meta_keys | |
| def transform(self, results: dict) -> dict: | |
| """Method to pack the input data. | |
| Args: | |
| results (dict): Result dict from the data pipeline. | |
| Returns: | |
| dict: | |
| - 'inputs' (obj:`torch.Tensor`): The forward data of models. | |
| - 'data_sample' (obj:`DetDataSample`): The annotation info of the | |
| sample. | |
| """ | |
| packed_results = dict() | |
| if 'img' in results: | |
| img = results['img'] | |
| if len(img.shape) < 3: | |
| img = np.expand_dims(img, -1) | |
| # To improve the computational speed by by 3-5 times, apply: | |
| # If image is not contiguous, use | |
| # `numpy.transpose()` followed by `numpy.ascontiguousarray()` | |
| # If image is already contiguous, use | |
| # `torch.permute()` followed by `torch.contiguous()` | |
| # Refer to https://github.com/open-mmlab/mmdetection/pull/9533 | |
| # for more details | |
| if not img.flags.c_contiguous: | |
| img = np.ascontiguousarray(img.transpose(2, 0, 1)) | |
| img = to_tensor(img) | |
| else: | |
| img = to_tensor(img).permute(2, 0, 1).contiguous() | |
| packed_results['inputs'] = img | |
| if 'gt_ignore_flags' in results: | |
| valid_idx = np.where(results['gt_ignore_flags'] == 0)[0] | |
| ignore_idx = np.where(results['gt_ignore_flags'] == 1)[0] | |
| data_sample = DetDataSample() | |
| instance_data = InstanceData() | |
| ignore_instance_data = InstanceData() | |
| for key in self.mapping_table.keys(): | |
| if key not in results: | |
| continue | |
| if key == 'gt_masks' or isinstance(results[key], BaseBoxes): | |
| if 'gt_ignore_flags' in results: | |
| instance_data[ | |
| self.mapping_table[key]] = results[key][valid_idx] | |
| ignore_instance_data[ | |
| self.mapping_table[key]] = results[key][ignore_idx] | |
| else: | |
| instance_data[self.mapping_table[key]] = results[key] | |
| else: | |
| if 'gt_ignore_flags' in results: | |
| instance_data[self.mapping_table[key]] = to_tensor( | |
| results[key][valid_idx]) | |
| ignore_instance_data[self.mapping_table[key]] = to_tensor( | |
| results[key][ignore_idx]) | |
| else: | |
| instance_data[self.mapping_table[key]] = to_tensor( | |
| results[key]) | |
| data_sample.gt_instances = instance_data | |
| data_sample.ignored_instances = ignore_instance_data | |
| if 'proposals' in results: | |
| proposals = InstanceData( | |
| bboxes=to_tensor(results['proposals']), | |
| scores=to_tensor(results['proposals_scores'])) | |
| data_sample.proposals = proposals | |
| if 'gt_seg_map' in results: | |
| gt_sem_seg_data = dict( | |
| sem_seg=to_tensor(results['gt_seg_map'][None, ...].copy())) | |
| data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data) | |
| img_meta = {} | |
| for key in self.meta_keys: | |
| assert key in results, f'`{key}` is not found in `results`, ' \ | |
| f'the valid keys are {list(results)}.' | |
| img_meta[key] = results[key] | |
| data_sample.set_metainfo(img_meta) | |
| packed_results['data_samples'] = data_sample | |
| return packed_results | |
| def __repr__(self) -> str: | |
| repr_str = self.__class__.__name__ | |
| repr_str += f'(meta_keys={self.meta_keys})' | |
| return repr_str | |
| class ToTensor: | |
| """Convert some results to :obj:`torch.Tensor` by given keys. | |
| Args: | |
| keys (Sequence[str]): Keys that need to be converted to Tensor. | |
| """ | |
| def __init__(self, keys): | |
| self.keys = keys | |
| def __call__(self, results): | |
| """Call function to convert data in results to :obj:`torch.Tensor`. | |
| Args: | |
| results (dict): Result dict contains the data to convert. | |
| Returns: | |
| dict: The result dict contains the data converted | |
| to :obj:`torch.Tensor`. | |
| """ | |
| for key in self.keys: | |
| results[key] = to_tensor(results[key]) | |
| return results | |
| def __repr__(self): | |
| return self.__class__.__name__ + f'(keys={self.keys})' | |
| class ImageToTensor: | |
| """Convert image to :obj:`torch.Tensor` by given keys. | |
| The dimension order of input image is (H, W, C). The pipeline will convert | |
| it to (C, H, W). If only 2 dimension (H, W) is given, the output would be | |
| (1, H, W). | |
| Args: | |
| keys (Sequence[str]): Key of images to be converted to Tensor. | |
| """ | |
| def __init__(self, keys): | |
| self.keys = keys | |
| def __call__(self, results): | |
| """Call function to convert image in results to :obj:`torch.Tensor` and | |
| transpose the channel order. | |
| Args: | |
| results (dict): Result dict contains the image data to convert. | |
| Returns: | |
| dict: The result dict contains the image converted | |
| to :obj:`torch.Tensor` and permuted to (C, H, W) order. | |
| """ | |
| for key in self.keys: | |
| img = results[key] | |
| if len(img.shape) < 3: | |
| img = np.expand_dims(img, -1) | |
| results[key] = to_tensor(img).permute(2, 0, 1).contiguous() | |
| return results | |
| def __repr__(self): | |
| return self.__class__.__name__ + f'(keys={self.keys})' | |
| class Transpose: | |
| """Transpose some results by given keys. | |
| Args: | |
| keys (Sequence[str]): Keys of results to be transposed. | |
| order (Sequence[int]): Order of transpose. | |
| """ | |
| def __init__(self, keys, order): | |
| self.keys = keys | |
| self.order = order | |
| def __call__(self, results): | |
| """Call function to transpose the channel order of data in results. | |
| Args: | |
| results (dict): Result dict contains the data to transpose. | |
| Returns: | |
| dict: The result dict contains the data transposed to \ | |
| ``self.order``. | |
| """ | |
| for key in self.keys: | |
| results[key] = results[key].transpose(self.order) | |
| return results | |
| def __repr__(self): | |
| return self.__class__.__name__ + \ | |
| f'(keys={self.keys}, order={self.order})' | |
| class WrapFieldsToLists: | |
| """Wrap fields of the data dictionary into lists for evaluation. | |
| This class can be used as a last step of a test or validation | |
| pipeline for single image evaluation or inference. | |
| Example: | |
| >>> test_pipeline = [ | |
| >>> dict(type='LoadImageFromFile'), | |
| >>> dict(type='Normalize', | |
| mean=[123.675, 116.28, 103.53], | |
| std=[58.395, 57.12, 57.375], | |
| to_rgb=True), | |
| >>> dict(type='Pad', size_divisor=32), | |
| >>> dict(type='ImageToTensor', keys=['img']), | |
| >>> dict(type='Collect', keys=['img']), | |
| >>> dict(type='WrapFieldsToLists') | |
| >>> ] | |
| """ | |
| def __call__(self, results): | |
| """Call function to wrap fields into lists. | |
| Args: | |
| results (dict): Result dict contains the data to wrap. | |
| Returns: | |
| dict: The result dict where value of ``self.keys`` are wrapped \ | |
| into list. | |
| """ | |
| # Wrap dict fields into lists | |
| for key, val in results.items(): | |
| results[key] = [val] | |
| return results | |
| def __repr__(self): | |
| return f'{self.__class__.__name__}()' | |