KyanChen's picture
Upload 159 files
1c3eb47
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union
from mmengine.fileio import (BaseStorageBackend, get_file_backend,
list_from_file)
from mmengine.logging import MMLogger
from mmcls.registry import DATASETS
from .base_dataset import BaseDataset
def find_folders(
root: str,
backend: Optional[BaseStorageBackend] = None
) -> Tuple[List[str], Dict[str, int]]:
"""Find classes by folders under a root.
Args:
root (string): root directory of folders
backend (BaseStorageBackend | None): The file backend of the root.
If None, auto infer backend from the root path. Defaults to None.
Returns:
Tuple[List[str], Dict[str, int]]:
- folders: The name of sub folders under the root.
- folder_to_idx: The map from folder name to class idx.
"""
# Pre-build file backend to prevent verbose file backend inference.
backend = backend or get_file_backend(root, enable_singleton=True)
folders = list(
backend.list_dir_or_file(
root,
list_dir=True,
list_file=False,
recursive=False,
))
folders.sort()
folder_to_idx = {folders[i]: i for i in range(len(folders))}
return folders, folder_to_idx
def get_samples(
root: str,
folder_to_idx: Dict[str, int],
is_valid_file: Callable,
backend: Optional[BaseStorageBackend] = None,
):
"""Make dataset by walking all images under a root.
Args:
root (string): root directory of folders
folder_to_idx (dict): the map from class name to class idx
is_valid_file (Callable): A function that takes path of a file
and check if the file is a valid sample file.
backend (BaseStorageBackend | None): The file backend of the root.
If None, auto infer backend from the root path. Defaults to None.
Returns:
Tuple[list, set]:
- samples: a list of tuple where each element is (image, class_idx)
- empty_folders: The folders don't have any valid files.
"""
samples = []
available_classes = set()
# Pre-build file backend to prevent verbose file backend inference.
backend = backend or get_file_backend(root, enable_singleton=True)
for folder_name in sorted(list(folder_to_idx.keys())):
_dir = backend.join_path(root, folder_name)
files = backend.list_dir_or_file(
_dir,
list_dir=False,
list_file=True,
recursive=True,
)
for file in sorted(list(files)):
if is_valid_file(file):
path = backend.join_path(folder_name, file)
item = (path, folder_to_idx[folder_name])
samples.append(item)
available_classes.add(folder_name)
empty_folders = set(folder_to_idx.keys()) - available_classes
return samples, empty_folders
@DATASETS.register_module()
class CustomDataset(BaseDataset):
"""Custom dataset for classification.
The dataset supports two kinds of annotation format.
1. An annotation file is provided, and each line indicates a sample:
The sample files: ::
data_prefix/
β”œβ”€β”€ folder_1
β”‚ β”œβ”€β”€ xxx.png
β”‚ β”œβ”€β”€ xxy.png
β”‚ └── ...
└── folder_2
β”œβ”€β”€ 123.png
β”œβ”€β”€ nsdf3.png
└── ...
The annotation file (the first column is the image path and the second
column is the index of category): ::
folder_1/xxx.png 0
folder_1/xxy.png 1
folder_2/123.png 5
folder_2/nsdf3.png 3
...
Please specify the name of categories by the argument ``classes``
or ``metainfo``.
2. The samples are arranged in the specific way: ::
data_prefix/
β”œβ”€β”€ class_x
β”‚ β”œβ”€β”€ xxx.png
β”‚ β”œβ”€β”€ xxy.png
β”‚ └── ...
β”‚ └── xxz.png
└── class_y
β”œβ”€β”€ 123.png
β”œβ”€β”€ nsdf3.png
β”œβ”€β”€ ...
└── asd932_.png
If the ``ann_file`` is specified, the dataset will be generated by the
first way, otherwise, try the second way.
Args:
ann_file (str): Annotation file path. Defaults to ''.
metainfo (dict, optional): Meta information for dataset, such as class
information. Defaults to None.
data_root (str): The root directory for ``data_prefix`` and
``ann_file``. Defaults to ''.
data_prefix (str | dict): Prefix for the data. Defaults to ''.
extensions (Sequence[str]): A sequence of allowed extensions. Defaults
to ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif').
lazy_init (bool): Whether to load annotation during instantiation.
In some cases, such as visualization, only the meta information of
the dataset is needed, which is not necessary to load annotation
file. ``Basedataset`` can skip load annotations to save time by set
``lazy_init=False``. Defaults to False.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self,
ann_file: str = '',
metainfo: Optional[dict] = None,
data_root: str = '',
data_prefix: Union[str, dict] = '',
extensions: Sequence[str] = ('.jpg', '.jpeg', '.png', '.ppm',
'.bmp', '.pgm', '.tif'),
lazy_init: bool = False,
**kwargs):
assert (ann_file or data_prefix or data_root), \
'One of `ann_file`, `data_root` and `data_prefix` must '\
'be specified.'
self.extensions = tuple(set([i.lower() for i in extensions]))
super().__init__(
# The base class requires string ann_file but this class doesn't
ann_file=ann_file,
metainfo=metainfo,
data_root=data_root,
data_prefix=data_prefix,
# Force to lazy_init for some modification before loading data.
lazy_init=True,
**kwargs)
# Full initialize the dataset.
if not lazy_init:
self.full_init()
def _find_samples(self):
"""find samples from ``data_prefix``."""
classes, folder_to_idx = find_folders(self.img_prefix)
samples, empty_classes = get_samples(
self.img_prefix,
folder_to_idx,
is_valid_file=self.is_valid_file,
)
if len(samples) == 0:
raise RuntimeError(
f'Found 0 files in subfolders of: {self.data_prefix}. '
f'Supported extensions are: {",".join(self.extensions)}')
if self.CLASSES is not None:
assert len(self.CLASSES) == len(classes), \
f"The number of subfolders ({len(classes)}) doesn't match " \
f'the number of specified classes ({len(self.CLASSES)}). ' \
'Please check the data folder.'
else:
self._metainfo['classes'] = tuple(classes)
if empty_classes:
logger = MMLogger.get_current_instance()
logger.warning(
'Found no valid file in the folder '
f'{", ".join(empty_classes)}. '
f"Supported extensions are: {', '.join(self.extensions)}")
self.folder_to_idx = folder_to_idx
return samples
def load_data_list(self):
"""Load image paths and gt_labels."""
if not self.ann_file:
samples = self._find_samples()
else:
lines = list_from_file(self.ann_file)
samples = [x.strip().rsplit(' ', 1) for x in lines]
# Pre-build file backend to prevent verbose file backend inference.
backend = get_file_backend(self.img_prefix, enable_singleton=True)
data_list = []
for filename, gt_label in samples:
img_path = backend.join_path(self.img_prefix, filename)
info = {'img_path': img_path, 'gt_label': int(gt_label)}
data_list.append(info)
return data_list
def is_valid_file(self, filename: str) -> bool:
"""Check if a file is a valid sample."""
return filename.lower().endswith(self.extensions)