KyanChen's picture
Upload 89 files
3094730
raw
history blame
16.8 kB
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import List, Sequence, Tuple, Union
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmdet.models.utils import multi_apply
from mmdet.utils import (ConfigType, OptConfigType, OptInstanceList,
OptMultiConfig)
from mmengine.dist import get_dist_info
from mmengine.model import BaseModule
from mmengine.structures import InstanceData
from torch import Tensor
from mmyolo.registry import MODELS, TASK_UTILS
from ..utils import gt_instances_preprocess, make_divisible
from .yolov5_head import YOLOv5Head
@MODELS.register_module()
class YOLOv8HeadModule(BaseModule):
"""YOLOv8HeadModule head module used in `YOLOv8`.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (Union[int, Sequence]): Number of channels in the input
feature map.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
num_base_priors (int): The number of priors (points) at a point
on the feature grid.
featmap_strides (Sequence[int]): Downsample factor of each feature map.
Defaults to [8, 16, 32].
reg_max (int): Max value of integral set :math: ``{0, ..., reg_max-1}``
in QFL setting. Defaults to 16.
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001).
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
Defaults to None.
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
num_classes: int,
in_channels: Union[int, Sequence],
widen_factor: float = 1.0,
num_base_priors: int = 1,
featmap_strides: Sequence[int] = (8, 16, 32),
reg_max: int = 16,
norm_cfg: ConfigType = dict(
type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
init_cfg: OptMultiConfig = None):
super().__init__(init_cfg=init_cfg)
self.num_classes = num_classes
self.featmap_strides = featmap_strides
self.num_levels = len(self.featmap_strides)
self.num_base_priors = num_base_priors
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.in_channels = in_channels
self.reg_max = reg_max
in_channels = []
for channel in self.in_channels:
channel = make_divisible(channel, widen_factor)
in_channels.append(channel)
self.in_channels = in_channels
self._init_layers()
def init_weights(self, prior_prob=0.01):
"""Initialize the weight and bias of PPYOLOE head."""
super().init_weights()
for reg_pred, cls_pred, stride in zip(self.reg_preds, self.cls_preds,
self.featmap_strides):
reg_pred[-1].bias.data[:] = 1.0 # box
# cls (.01 objects, 80 classes, 640 img)
cls_pred[-1].bias.data[:self.num_classes] = math.log(
5 / self.num_classes / (640 / stride)**2)
def _init_layers(self):
"""initialize conv layers in YOLOv8 head."""
# Init decouple head
self.cls_preds = nn.ModuleList()
self.reg_preds = nn.ModuleList()
reg_out_channels = max(
(16, self.in_channels[0] // 4, self.reg_max * 4))
cls_out_channels = max(self.in_channels[0], self.num_classes)
for i in range(self.num_levels):
self.reg_preds.append(
nn.Sequential(
ConvModule(
in_channels=self.in_channels[i],
out_channels=reg_out_channels,
kernel_size=3,
stride=1,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
ConvModule(
in_channels=reg_out_channels,
out_channels=reg_out_channels,
kernel_size=3,
stride=1,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
nn.Conv2d(
in_channels=reg_out_channels,
out_channels=4 * self.reg_max,
kernel_size=1)))
self.cls_preds.append(
nn.Sequential(
ConvModule(
in_channels=self.in_channels[i],
out_channels=cls_out_channels,
kernel_size=3,
stride=1,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
ConvModule(
in_channels=cls_out_channels,
out_channels=cls_out_channels,
kernel_size=3,
stride=1,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
nn.Conv2d(
in_channels=cls_out_channels,
out_channels=self.num_classes,
kernel_size=1)))
proj = torch.arange(self.reg_max, dtype=torch.float)
self.register_buffer('proj', proj, persistent=False)
def forward(self, x: Tuple[Tensor]) -> Tuple[List]:
"""Forward features from the upstream network.
Args:
x (Tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
Tuple[List]: A tuple of multi-level classification scores, bbox
predictions
"""
assert len(x) == self.num_levels
return multi_apply(self.forward_single, x, self.cls_preds,
self.reg_preds)
def forward_single(self, x: torch.Tensor, cls_pred: nn.ModuleList,
reg_pred: nn.ModuleList) -> Tuple:
"""Forward feature of a single scale level."""
b, _, h, w = x.shape
cls_logit = cls_pred(x)
bbox_dist_preds = reg_pred(x)
if self.reg_max > 1:
bbox_dist_preds = bbox_dist_preds.reshape(
[-1, 4, self.reg_max, h * w]).permute(0, 3, 1, 2)
# TODO: The get_flops script cannot handle the situation of
# matmul, and needs to be fixed later
# bbox_preds = bbox_dist_preds.softmax(3).matmul(self.proj)
bbox_preds = bbox_dist_preds.softmax(3).matmul(
self.proj.view([-1, 1])).squeeze(-1)
bbox_preds = bbox_preds.transpose(1, 2).reshape(b, -1, h, w)
else:
bbox_preds = bbox_dist_preds
if self.training:
return cls_logit, bbox_preds, bbox_dist_preds
else:
return cls_logit, bbox_preds
@MODELS.register_module()
class YOLOv8Head(YOLOv5Head):
"""YOLOv8Head head used in `YOLOv8`.
Args:
head_module(:obj:`ConfigDict` or dict): Base module used for YOLOv8Head
prior_generator(dict): Points generator feature maps
in 2D points-based detectors.
bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder.
loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss.
loss_dfl (:obj:`ConfigDict` or dict): Config of Distribution Focal
Loss.
train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
anchor head. Defaults to None.
test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
anchor head. Defaults to None.
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
head_module: ConfigType,
prior_generator: ConfigType = dict(
type='mmdet.MlvlPointGenerator',
offset=0.5,
strides=[8, 16, 32]),
bbox_coder: ConfigType = dict(type='DistancePointBBoxCoder'),
loss_cls: ConfigType = dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
reduction='none',
loss_weight=0.5),
loss_bbox: ConfigType = dict(
type='IoULoss',
iou_mode='ciou',
bbox_format='xyxy',
reduction='sum',
loss_weight=7.5,
return_iou=False),
loss_dfl=dict(
type='mmdet.DistributionFocalLoss',
reduction='mean',
loss_weight=1.5 / 4),
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
init_cfg: OptMultiConfig = None
):
super().__init__(
head_module=head_module,
prior_generator=prior_generator,
bbox_coder=bbox_coder,
loss_cls=loss_cls,
loss_bbox=loss_bbox,
train_cfg=train_cfg,
test_cfg=test_cfg,
init_cfg=init_cfg)
self.loss_dfl = MODELS.build(loss_dfl)
# YOLOv8 doesn't need loss_obj
self.loss_obj = None
def special_init(self):
"""Since YOLO series algorithms will inherit from YOLOv5Head, but
different algorithms have special initialization process.
The special_init function is designed to deal with this situation.
"""
if self.train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg.assigner)
# Add common attributes to reduce calculation
self.featmap_sizes_train = None
self.num_level_priors = None
self.flatten_priors_train = None
self.stride_tensor = None
def loss_by_feat(
self,
cls_scores: Sequence[Tensor],
bbox_preds: Sequence[Tensor],
bbox_dist_preds: Sequence[Tensor],
batch_gt_instances: Sequence[InstanceData],
batch_img_metas: Sequence[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Calculate the loss based on the features extracted by the detection
head.
Args:
cls_scores (Sequence[Tensor]): Box scores for each scale level,
each is a 4D-tensor, the channel number is
num_priors * num_classes.
bbox_preds (Sequence[Tensor]): Box energies / deltas for each scale
level, each is a 4D-tensor, the channel number is
num_priors * 4.
bbox_dist_preds (Sequence[Tensor]): Box distribution logits for
each scale level with shape (bs, reg_max + 1, H*W, 4).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of losses.
"""
num_imgs = len(batch_img_metas)
current_featmap_sizes = [
cls_score.shape[2:] for cls_score in cls_scores
]
# If the shape does not equal, generate new one
if current_featmap_sizes != self.featmap_sizes_train:
self.featmap_sizes_train = current_featmap_sizes
mlvl_priors_with_stride = self.prior_generator.grid_priors(
self.featmap_sizes_train,
dtype=cls_scores[0].dtype,
device=cls_scores[0].device,
with_stride=True)
self.num_level_priors = [len(n) for n in mlvl_priors_with_stride]
self.flatten_priors_train = torch.cat(
mlvl_priors_with_stride, dim=0)
self.stride_tensor = self.flatten_priors_train[..., [2]]
# gt info
gt_info = gt_instances_preprocess(batch_gt_instances, num_imgs)
gt_labels = gt_info[:, :, :1]
gt_bboxes = gt_info[:, :, 1:] # xyxy
pad_bbox_flag = (gt_bboxes.sum(-1, keepdim=True) > 0).float()
# pred info
flatten_cls_preds = [
cls_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1,
self.num_classes)
for cls_pred in cls_scores
]
flatten_pred_bboxes = [
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
for bbox_pred in bbox_preds
]
# (bs, n, 4 * reg_max)
flatten_pred_dists = [
bbox_pred_org.reshape(num_imgs, -1, self.head_module.reg_max * 4)
for bbox_pred_org in bbox_dist_preds
]
flatten_dist_preds = torch.cat(flatten_pred_dists, dim=1)
flatten_cls_preds = torch.cat(flatten_cls_preds, dim=1)
flatten_pred_bboxes = torch.cat(flatten_pred_bboxes, dim=1)
flatten_pred_bboxes = self.bbox_coder.decode(
self.flatten_priors_train[..., :2], flatten_pred_bboxes,
self.stride_tensor[..., 0])
assigned_result = self.assigner(
(flatten_pred_bboxes.detach()).type(gt_bboxes.dtype),
flatten_cls_preds.detach().sigmoid(), self.flatten_priors_train,
gt_labels, gt_bboxes, pad_bbox_flag)
assigned_bboxes = assigned_result['assigned_bboxes']
assigned_scores = assigned_result['assigned_scores']
fg_mask_pre_prior = assigned_result['fg_mask_pre_prior']
assigned_scores_sum = assigned_scores.sum().clamp(min=1)
loss_cls = self.loss_cls(flatten_cls_preds, assigned_scores).sum()
loss_cls /= assigned_scores_sum
# rescale bbox
assigned_bboxes /= self.stride_tensor
flatten_pred_bboxes /= self.stride_tensor
# select positive samples mask
num_pos = fg_mask_pre_prior.sum()
if num_pos > 0:
# when num_pos > 0, assigned_scores_sum will >0, so the loss_bbox
# will not report an error
# iou loss
prior_bbox_mask = fg_mask_pre_prior.unsqueeze(-1).repeat([1, 1, 4])
pred_bboxes_pos = torch.masked_select(
flatten_pred_bboxes, prior_bbox_mask).reshape([-1, 4])
assigned_bboxes_pos = torch.masked_select(
assigned_bboxes, prior_bbox_mask).reshape([-1, 4])
bbox_weight = torch.masked_select(
assigned_scores.sum(-1), fg_mask_pre_prior).unsqueeze(-1)
loss_bbox = self.loss_bbox(
pred_bboxes_pos, assigned_bboxes_pos,
weight=bbox_weight) / assigned_scores_sum
# dfl loss
pred_dist_pos = flatten_dist_preds[fg_mask_pre_prior]
assigned_ltrb = self.bbox_coder.encode(
self.flatten_priors_train[..., :2] / self.stride_tensor,
assigned_bboxes,
max_dis=self.head_module.reg_max - 1,
eps=0.01)
assigned_ltrb_pos = torch.masked_select(
assigned_ltrb, prior_bbox_mask).reshape([-1, 4])
loss_dfl = self.loss_dfl(
pred_dist_pos.reshape(-1, self.head_module.reg_max),
assigned_ltrb_pos.reshape(-1),
weight=bbox_weight.expand(-1, 4).reshape(-1),
avg_factor=assigned_scores_sum)
else:
loss_bbox = flatten_pred_bboxes.sum() * 0
loss_dfl = flatten_pred_bboxes.sum() * 0
_, world_size = get_dist_info()
return dict(
loss_cls=loss_cls * num_imgs * world_size,
loss_bbox=loss_bbox * num_imgs * world_size,
loss_dfl=loss_dfl * num_imgs * world_size)