Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
from typing import List, Sequence, Union | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule | |
from mmdet.models.backbones.csp_darknet import CSPLayer | |
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig | |
from mmyolo.registry import MODELS | |
from ..layers import SPPFBottleneck | |
from .base_backbone import BaseBackbone | |
class CSPNeXt(BaseBackbone): | |
"""CSPNeXt backbone used in RTMDet. | |
Args: | |
arch (str): Architecture of CSPNeXt, from {P5, P6}. | |
Defaults to P5. | |
deepen_factor (float): Depth multiplier, multiply number of | |
blocks in CSP layer by this amount. Defaults to 1.0. | |
widen_factor (float): Width multiplier, multiply number of | |
channels in each layer by this amount. Defaults to 1.0. | |
out_indices (Sequence[int]): Output from which stages. | |
Defaults to (2, 3, 4). | |
frozen_stages (int): Stages to be frozen (stop grad and set eval | |
mode). -1 means not freezing any parameters. Defaults to -1. | |
plugins (list[dict]): List of plugins for stages, each dict contains: | |
- cfg (dict, required): Cfg dict to build plugin.Defaults to | |
- stages (tuple[bool], optional): Stages to apply plugin, length | |
should be same as 'num_stages'. | |
use_depthwise (bool): Whether to use depthwise separable convolution. | |
Defaults to False. | |
expand_ratio (float): Ratio to adjust the number of channels of the | |
hidden layer. Defaults to 0.5. | |
arch_ovewrite (list): Overwrite default arch settings. | |
Defaults to None. | |
channel_attention (bool): Whether to add channel attention in each | |
stage. Defaults to True. | |
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for | |
convolution layer. Defaults to None. | |
norm_cfg (:obj:`ConfigDict` or dict): Dictionary to construct and | |
config norm layer. Defaults to dict(type='BN', requires_grad=True). | |
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer. | |
Defaults to dict(type='SiLU', inplace=True). | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. | |
init_cfg (:obj:`ConfigDict` or dict or list[dict] or | |
list[:obj:`ConfigDict`]): Initialization config dict. | |
""" | |
# From left to right: | |
# in_channels, out_channels, num_blocks, add_identity, use_spp | |
arch_settings = { | |
'P5': [[64, 128, 3, True, False], [128, 256, 6, True, False], | |
[256, 512, 6, True, False], [512, 1024, 3, False, True]], | |
'P6': [[64, 128, 3, True, False], [128, 256, 6, True, False], | |
[256, 512, 6, True, False], [512, 768, 3, True, False], | |
[768, 1024, 3, False, True]] | |
} | |
def __init__( | |
self, | |
arch: str = 'P5', | |
deepen_factor: float = 1.0, | |
widen_factor: float = 1.0, | |
input_channels: int = 3, | |
out_indices: Sequence[int] = (2, 3, 4), | |
frozen_stages: int = -1, | |
plugins: Union[dict, List[dict]] = None, | |
use_depthwise: bool = False, | |
expand_ratio: float = 0.5, | |
arch_ovewrite: dict = None, | |
channel_attention: bool = True, | |
conv_cfg: OptConfigType = None, | |
norm_cfg: ConfigType = dict(type='BN'), | |
act_cfg: ConfigType = dict(type='SiLU', inplace=True), | |
norm_eval: bool = False, | |
init_cfg: OptMultiConfig = dict( | |
type='Kaiming', | |
layer='Conv2d', | |
a=math.sqrt(5), | |
distribution='uniform', | |
mode='fan_in', | |
nonlinearity='leaky_relu') | |
) -> None: | |
arch_setting = self.arch_settings[arch] | |
if arch_ovewrite: | |
arch_setting = arch_ovewrite | |
self.channel_attention = channel_attention | |
self.use_depthwise = use_depthwise | |
self.conv = DepthwiseSeparableConvModule \ | |
if use_depthwise else ConvModule | |
self.expand_ratio = expand_ratio | |
self.conv_cfg = conv_cfg | |
super().__init__( | |
arch_setting, | |
deepen_factor, | |
widen_factor, | |
input_channels, | |
out_indices, | |
frozen_stages=frozen_stages, | |
plugins=plugins, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
norm_eval=norm_eval, | |
init_cfg=init_cfg) | |
def build_stem_layer(self) -> nn.Module: | |
"""Build a stem layer.""" | |
stem = nn.Sequential( | |
ConvModule( | |
3, | |
int(self.arch_setting[0][0] * self.widen_factor // 2), | |
3, | |
padding=1, | |
stride=2, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg), | |
ConvModule( | |
int(self.arch_setting[0][0] * self.widen_factor // 2), | |
int(self.arch_setting[0][0] * self.widen_factor // 2), | |
3, | |
padding=1, | |
stride=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg), | |
ConvModule( | |
int(self.arch_setting[0][0] * self.widen_factor // 2), | |
int(self.arch_setting[0][0] * self.widen_factor), | |
3, | |
padding=1, | |
stride=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg)) | |
return stem | |
def build_stage_layer(self, stage_idx: int, setting: list) -> list: | |
"""Build a stage layer. | |
Args: | |
stage_idx (int): The index of a stage layer. | |
setting (list): The architecture setting of a stage layer. | |
""" | |
in_channels, out_channels, num_blocks, add_identity, use_spp = setting | |
in_channels = int(in_channels * self.widen_factor) | |
out_channels = int(out_channels * self.widen_factor) | |
num_blocks = max(round(num_blocks * self.deepen_factor), 1) | |
stage = [] | |
conv_layer = self.conv( | |
in_channels, | |
out_channels, | |
3, | |
stride=2, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
stage.append(conv_layer) | |
if use_spp: | |
spp = SPPFBottleneck( | |
out_channels, | |
out_channels, | |
kernel_sizes=5, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
stage.append(spp) | |
csp_layer = CSPLayer( | |
out_channels, | |
out_channels, | |
num_blocks=num_blocks, | |
add_identity=add_identity, | |
use_depthwise=self.use_depthwise, | |
use_cspnext_block=True, | |
expand_ratio=self.expand_ratio, | |
channel_attention=self.channel_attention, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
stage.append(csp_layer) | |
return stage | |