Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
"""MMPretrain provides 21 registry nodes to support using modules across | |
projects. Each node is a child of the root registry in MMEngine. | |
More details can be found at | |
https://mmengine.readthedocs.io/en/latest/tutorials/registry.html. | |
""" | |
from mmengine.registry import DATA_SAMPLERS as MMENGINE_DATA_SAMPLERS | |
from mmengine.registry import DATASETS as MMENGINE_DATASETS | |
from mmengine.registry import EVALUATOR as MMENGINE_EVALUATOR | |
from mmengine.registry import HOOKS as MMENGINE_HOOKS | |
from mmengine.registry import LOG_PROCESSORS as MMENGINE_LOG_PROCESSORS | |
from mmengine.registry import LOOPS as MMENGINE_LOOPS | |
from mmengine.registry import METRICS as MMENGINE_METRICS | |
from mmengine.registry import MODEL_WRAPPERS as MMENGINE_MODEL_WRAPPERS | |
from mmengine.registry import MODELS as MMENGINE_MODELS | |
from mmengine.registry import \ | |
OPTIM_WRAPPER_CONSTRUCTORS as MMENGINE_OPTIM_WRAPPER_CONSTRUCTORS | |
from mmengine.registry import OPTIM_WRAPPERS as MMENGINE_OPTIM_WRAPPERS | |
from mmengine.registry import OPTIMIZERS as MMENGINE_OPTIMIZERS | |
from mmengine.registry import PARAM_SCHEDULERS as MMENGINE_PARAM_SCHEDULERS | |
from mmengine.registry import \ | |
RUNNER_CONSTRUCTORS as MMENGINE_RUNNER_CONSTRUCTORS | |
from mmengine.registry import RUNNERS as MMENGINE_RUNNERS | |
from mmengine.registry import TASK_UTILS as MMENGINE_TASK_UTILS | |
from mmengine.registry import TRANSFORMS as MMENGINE_TRANSFORMS | |
from mmengine.registry import VISBACKENDS as MMENGINE_VISBACKENDS | |
from mmengine.registry import VISUALIZERS as MMENGINE_VISUALIZERS | |
from mmengine.registry import \ | |
WEIGHT_INITIALIZERS as MMENGINE_WEIGHT_INITIALIZERS | |
from mmengine.registry import Registry | |
__all__ = [ | |
'RUNNERS', 'RUNNER_CONSTRUCTORS', 'LOOPS', 'HOOKS', 'LOG_PROCESSORS', | |
'OPTIMIZERS', 'OPTIM_WRAPPERS', 'OPTIM_WRAPPER_CONSTRUCTORS', | |
'PARAM_SCHEDULERS', 'DATASETS', 'DATA_SAMPLERS', 'TRANSFORMS', 'MODELS', | |
'MODEL_WRAPPERS', 'WEIGHT_INITIALIZERS', 'BATCH_AUGMENTS', 'TASK_UTILS', | |
'METRICS', 'EVALUATORS', 'VISUALIZERS', 'VISBACKENDS' | |
] | |
####################################################################### | |
# mmpretrain.engine # | |
####################################################################### | |
# Runners like `EpochBasedRunner` and `IterBasedRunner` | |
RUNNERS = Registry( | |
'runner', | |
parent=MMENGINE_RUNNERS, | |
locations=['mmpretrain.engine'], | |
) | |
# Runner constructors that define how to initialize runners | |
RUNNER_CONSTRUCTORS = Registry( | |
'runner constructor', | |
parent=MMENGINE_RUNNER_CONSTRUCTORS, | |
locations=['mmpretrain.engine'], | |
) | |
# Loops which define the training or test process, like `EpochBasedTrainLoop` | |
LOOPS = Registry( | |
'loop', | |
parent=MMENGINE_LOOPS, | |
locations=['mmpretrain.engine'], | |
) | |
# Hooks to add additional functions during running, like `CheckpointHook` | |
HOOKS = Registry( | |
'hook', | |
parent=MMENGINE_HOOKS, | |
locations=['mmpretrain.engine'], | |
) | |
# Log processors to process the scalar log data. | |
LOG_PROCESSORS = Registry( | |
'log processor', | |
parent=MMENGINE_LOG_PROCESSORS, | |
locations=['mmpretrain.engine'], | |
) | |
# Optimizers to optimize the model weights, like `SGD` and `Adam`. | |
OPTIMIZERS = Registry( | |
'optimizer', | |
parent=MMENGINE_OPTIMIZERS, | |
locations=['mmpretrain.engine'], | |
) | |
# Optimizer wrappers to enhance the optimization process. | |
OPTIM_WRAPPERS = Registry( | |
'optimizer_wrapper', | |
parent=MMENGINE_OPTIM_WRAPPERS, | |
locations=['mmpretrain.engine'], | |
) | |
# Optimizer constructors to customize the hyperparameters of optimizers. | |
OPTIM_WRAPPER_CONSTRUCTORS = Registry( | |
'optimizer wrapper constructor', | |
parent=MMENGINE_OPTIM_WRAPPER_CONSTRUCTORS, | |
locations=['mmpretrain.engine'], | |
) | |
# Parameter schedulers to dynamically adjust optimization parameters. | |
PARAM_SCHEDULERS = Registry( | |
'parameter scheduler', | |
parent=MMENGINE_PARAM_SCHEDULERS, | |
locations=['mmpretrain.engine'], | |
) | |
####################################################################### | |
# mmpretrain.datasets # | |
####################################################################### | |
# Datasets like `ImageNet` and `CIFAR10`. | |
DATASETS = Registry( | |
'dataset', | |
parent=MMENGINE_DATASETS, | |
locations=['mmpretrain.datasets'], | |
) | |
# Samplers to sample the dataset. | |
DATA_SAMPLERS = Registry( | |
'data sampler', | |
parent=MMENGINE_DATA_SAMPLERS, | |
locations=['mmpretrain.datasets'], | |
) | |
# Transforms to process the samples from the dataset. | |
TRANSFORMS = Registry( | |
'transform', | |
parent=MMENGINE_TRANSFORMS, | |
locations=['mmpretrain.datasets'], | |
) | |
####################################################################### | |
# mmpretrain.models # | |
####################################################################### | |
# Neural network modules inheriting `nn.Module`. | |
MODELS = Registry( | |
'model', | |
parent=MMENGINE_MODELS, | |
locations=['mmpretrain.models'], | |
) | |
# Model wrappers like 'MMDistributedDataParallel' | |
MODEL_WRAPPERS = Registry( | |
'model_wrapper', | |
parent=MMENGINE_MODEL_WRAPPERS, | |
locations=['mmpretrain.models'], | |
) | |
# Weight initialization methods like uniform, xavier. | |
WEIGHT_INITIALIZERS = Registry( | |
'weight initializer', | |
parent=MMENGINE_WEIGHT_INITIALIZERS, | |
locations=['mmpretrain.models'], | |
) | |
# Batch augmentations like `Mixup` and `CutMix`. | |
BATCH_AUGMENTS = Registry( | |
'batch augment', | |
locations=['mmpretrain.models'], | |
) | |
# Task-specific modules like anchor generators and box coders | |
TASK_UTILS = Registry( | |
'task util', | |
parent=MMENGINE_TASK_UTILS, | |
locations=['mmpretrain.models'], | |
) | |
# Tokenizer to encode sequence | |
TOKENIZER = Registry( | |
'tokenizer', | |
locations=['mmpretrain.models'], | |
) | |
####################################################################### | |
# mmpretrain.evaluation # | |
####################################################################### | |
# Metrics to evaluate the model prediction results. | |
METRICS = Registry( | |
'metric', | |
parent=MMENGINE_METRICS, | |
locations=['mmpretrain.evaluation'], | |
) | |
# Evaluators to define the evaluation process. | |
EVALUATORS = Registry( | |
'evaluator', | |
parent=MMENGINE_EVALUATOR, | |
locations=['mmpretrain.evaluation'], | |
) | |
####################################################################### | |
# mmpretrain.visualization # | |
####################################################################### | |
# Visualizers to display task-specific results. | |
VISUALIZERS = Registry( | |
'visualizer', | |
parent=MMENGINE_VISUALIZERS, | |
locations=['mmpretrain.visualization'], | |
) | |
# Backends to save the visualization results, like TensorBoard, WandB. | |
VISBACKENDS = Registry( | |
'vis_backend', | |
parent=MMENGINE_VISBACKENDS, | |
locations=['mmpretrain.visualization'], | |
) | |