RSPrompter / mmpretrain /datasets /visual_genome.py
KyanChen's picture
Upload 303 files
4d0eb62
raw
history blame
3 kB
# Copyright (c) OpenMMLab. All rights reserved.
import re
from itertools import chain
from typing import List
import mmengine
from mmengine.dataset import BaseDataset
from mmpretrain.registry import DATASETS
@DATASETS.register_module()
class VisualGenomeQA(BaseDataset):
"""Visual Genome Question Answering dataset.
dataset structure: ::
data_root
β”œβ”€β”€ image
β”‚Β Β  β”œβ”€β”€ 1.jpg
β”‚Β Β  β”œβ”€β”€ 2.jpg
β”‚Β Β  └── ...
└── question_answers.json
Args:
data_root (str): The root directory for ``data_prefix``, ``ann_file``
and ``question_file``.
data_prefix (str): The directory of images. Defaults to ``"image"``.
ann_file (str, optional): Annotation file path for training and
validation. Defaults to ``"question_answers.json"``.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self,
data_root: str,
data_prefix: str = 'image',
ann_file: str = 'question_answers.json',
**kwarg):
super().__init__(
data_root=data_root,
data_prefix=dict(img_path=data_prefix),
ann_file=ann_file,
**kwarg,
)
def _create_image_index(self):
img_prefix = self.data_prefix['img_path']
files = mmengine.list_dir_or_file(img_prefix, list_dir=False)
image_index = {}
for file in files:
image_id = re.findall(r'\d+', file)
if len(image_id) > 0:
image_id = int(image_id[-1])
image_index[image_id] = mmengine.join_path(img_prefix, file)
return image_index
def load_data_list(self) -> List[dict]:
"""Load data list."""
annotations = mmengine.load(self.ann_file)
# The original Visual Genome annotation file and question file includes
# only image id but no image file paths.
self.image_index = self._create_image_index()
data_list = []
for qas in chain.from_iterable(ann['qas'] for ann in annotations):
# ann example
# {
# 'id': 1,
# 'qas': [
# {
# 'a_objects': [],
# 'question': 'What color is the clock?',
# 'image_id': 1,
# 'qa_id': 986768,
# 'answer': 'Two.',
# 'q_objects': [],
# }
# ...
# ]
# }
data_info = {
'img_path': self.image_index[qas['image_id']],
'quesiton': qas['quesiton'],
'question_id': qas['question_id'],
'image_id': qas['image_id'],
'gt_answer': [qas['answer']],
}
data_list.append(data_info)
return data_list