Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import datetime | |
import logging | |
import os | |
import platform | |
import warnings | |
import cv2 | |
import torch.multiprocessing as mp | |
from mmengine import DefaultScope | |
from mmengine.logging import print_log | |
from mmengine.utils import digit_version | |
def setup_cache_size_limit_of_dynamo(): | |
"""Setup cache size limit of dynamo. | |
Note: Due to the dynamic shape of the loss calculation and | |
post-processing parts in the object detection algorithm, these | |
functions must be compiled every time they are run. | |
Setting a large value for torch._dynamo.config.cache_size_limit | |
may result in repeated compilation, which can slow down training | |
and testing speed. Therefore, we need to set the default value of | |
cache_size_limit smaller. An empirical value is 4. | |
""" | |
import torch | |
if digit_version(torch.__version__) >= digit_version('2.0.0'): | |
if 'DYNAMO_CACHE_SIZE_LIMIT' in os.environ: | |
import torch._dynamo | |
cache_size_limit = int(os.environ['DYNAMO_CACHE_SIZE_LIMIT']) | |
torch._dynamo.config.cache_size_limit = cache_size_limit | |
print_log( | |
f'torch._dynamo.config.cache_size_limit is force ' | |
f'set to {cache_size_limit}.', | |
logger='current', | |
level=logging.WARNING) | |
def setup_multi_processes(cfg): | |
"""Setup multi-processing environment variables.""" | |
# set multi-process start method as `fork` to speed up the training | |
if platform.system() != 'Windows': | |
mp_start_method = cfg.get('mp_start_method', 'fork') | |
current_method = mp.get_start_method(allow_none=True) | |
if current_method is not None and current_method != mp_start_method: | |
warnings.warn( | |
f'Multi-processing start method `{mp_start_method}` is ' | |
f'different from the previous setting `{current_method}`.' | |
f'It will be force set to `{mp_start_method}`. You can change ' | |
f'this behavior by changing `mp_start_method` in your config.') | |
mp.set_start_method(mp_start_method, force=True) | |
# disable opencv multithreading to avoid system being overloaded | |
opencv_num_threads = cfg.get('opencv_num_threads', 0) | |
cv2.setNumThreads(opencv_num_threads) | |
# setup OMP threads | |
# This code is referred from https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py # noqa | |
workers_per_gpu = cfg.data.get('workers_per_gpu', 1) | |
if 'train_dataloader' in cfg.data: | |
workers_per_gpu = \ | |
max(cfg.data.train_dataloader.get('workers_per_gpu', 1), | |
workers_per_gpu) | |
if 'OMP_NUM_THREADS' not in os.environ and workers_per_gpu > 1: | |
omp_num_threads = 1 | |
warnings.warn( | |
f'Setting OMP_NUM_THREADS environment variable for each process ' | |
f'to be {omp_num_threads} in default, to avoid your system being ' | |
f'overloaded, please further tune the variable for optimal ' | |
f'performance in your application as needed.') | |
os.environ['OMP_NUM_THREADS'] = str(omp_num_threads) | |
# setup MKL threads | |
if 'MKL_NUM_THREADS' not in os.environ and workers_per_gpu > 1: | |
mkl_num_threads = 1 | |
warnings.warn( | |
f'Setting MKL_NUM_THREADS environment variable for each process ' | |
f'to be {mkl_num_threads} in default, to avoid your system being ' | |
f'overloaded, please further tune the variable for optimal ' | |
f'performance in your application as needed.') | |
os.environ['MKL_NUM_THREADS'] = str(mkl_num_threads) | |
def register_all_modules(init_default_scope: bool = True) -> None: | |
"""Register all modules in mmdet into the registries. | |
Args: | |
init_default_scope (bool): Whether initialize the mmdet default scope. | |
When `init_default_scope=True`, the global default scope will be | |
set to `mmdet`, and all registries will build modules from mmdet's | |
registry node. To understand more about the registry, please refer | |
to https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md | |
Defaults to True. | |
""" # noqa | |
import mmdet.datasets # noqa: F401,F403 | |
import mmdet.engine # noqa: F401,F403 | |
import mmdet.evaluation # noqa: F401,F403 | |
import mmdet.models # noqa: F401,F403 | |
import mmdet.visualization # noqa: F401,F403 | |
if init_default_scope: | |
never_created = DefaultScope.get_current_instance() is None \ | |
or not DefaultScope.check_instance_created('mmdet') | |
if never_created: | |
DefaultScope.get_instance('mmdet', scope_name='mmdet') | |
return | |
current_scope = DefaultScope.get_current_instance() | |
if current_scope.scope_name != 'mmdet': | |
warnings.warn('The current default scope ' | |
f'"{current_scope.scope_name}" is not "mmdet", ' | |
'`register_all_modules` will force the current' | |
'default scope to be "mmdet". If this is not ' | |
'expected, please set `init_default_scope=False`.') | |
# avoid name conflict | |
new_instance_name = f'mmdet-{datetime.datetime.now()}' | |
DefaultScope.get_instance(new_instance_name, scope_name='mmdet') | |