Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
from mmengine.structures import InstanceData | |
from mmdet.registry import TASK_UTILS | |
from ..assigners import AssignResult | |
from .base_sampler import BaseSampler | |
from .sampling_result import SamplingResult | |
class PseudoSampler(BaseSampler): | |
"""A pseudo sampler that does not do sampling actually.""" | |
def __init__(self, **kwargs): | |
pass | |
def _sample_pos(self, **kwargs): | |
"""Sample positive samples.""" | |
raise NotImplementedError | |
def _sample_neg(self, **kwargs): | |
"""Sample negative samples.""" | |
raise NotImplementedError | |
def sample(self, assign_result: AssignResult, pred_instances: InstanceData, | |
gt_instances: InstanceData, *args, **kwargs): | |
"""Directly returns the positive and negative indices of samples. | |
Args: | |
assign_result (:obj:`AssignResult`): Bbox assigning results. | |
pred_instances (:obj:`InstanceData`): Instances of model | |
predictions. It includes ``priors``, and the priors can | |
be anchors, points, or bboxes predicted by the model, | |
shape(n, 4). | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
Returns: | |
:obj:`SamplingResult`: sampler results | |
""" | |
gt_bboxes = gt_instances.bboxes | |
priors = pred_instances.priors | |
pos_inds = torch.nonzero( | |
assign_result.gt_inds > 0, as_tuple=False).squeeze(-1).unique() | |
neg_inds = torch.nonzero( | |
assign_result.gt_inds == 0, as_tuple=False).squeeze(-1).unique() | |
gt_flags = priors.new_zeros(priors.shape[0], dtype=torch.uint8) | |
sampling_result = SamplingResult( | |
pos_inds=pos_inds, | |
neg_inds=neg_inds, | |
priors=priors, | |
gt_bboxes=gt_bboxes, | |
assign_result=assign_result, | |
gt_flags=gt_flags, | |
avg_factor_with_neg=False) | |
return sampling_result | |