KyanChen's picture
Upload 787 files
3e06e1c
raw
history blame
16.4 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from mmdet.registry import MODELS
class Transition(BaseModule):
"""Base class for transition.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
"""
def __init__(self, in_channels, out_channels, init_cfg=None):
super().__init__(init_cfg)
self.in_channels = in_channels
self.out_channels = out_channels
def forward(x):
pass
class UpInterpolationConv(Transition):
"""A transition used for up-sampling.
Up-sample the input by interpolation then refines the feature by
a convolution layer.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
scale_factor (int): Up-sampling factor. Default: 2.
mode (int): Interpolation mode. Default: nearest.
align_corners (bool): Whether align corners when interpolation.
Default: None.
kernel_size (int): Kernel size for the conv. Default: 3.
"""
def __init__(self,
in_channels,
out_channels,
scale_factor=2,
mode='nearest',
align_corners=None,
kernel_size=3,
init_cfg=None,
**kwargs):
super().__init__(in_channels, out_channels, init_cfg)
self.mode = mode
self.scale_factor = scale_factor
self.align_corners = align_corners
self.conv = ConvModule(
in_channels,
out_channels,
kernel_size,
padding=(kernel_size - 1) // 2,
**kwargs)
def forward(self, x):
x = F.interpolate(
x,
scale_factor=self.scale_factor,
mode=self.mode,
align_corners=self.align_corners)
x = self.conv(x)
return x
class LastConv(Transition):
"""A transition used for refining the output of the last stage.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
num_inputs (int): Number of inputs of the FPN features.
kernel_size (int): Kernel size for the conv. Default: 3.
"""
def __init__(self,
in_channels,
out_channels,
num_inputs,
kernel_size=3,
init_cfg=None,
**kwargs):
super().__init__(in_channels, out_channels, init_cfg)
self.num_inputs = num_inputs
self.conv_out = ConvModule(
in_channels,
out_channels,
kernel_size,
padding=(kernel_size - 1) // 2,
**kwargs)
def forward(self, inputs):
assert len(inputs) == self.num_inputs
return self.conv_out(inputs[-1])
@MODELS.register_module()
class FPG(BaseModule):
"""FPG.
Implementation of `Feature Pyramid Grids (FPG)
<https://arxiv.org/abs/2004.03580>`_.
This implementation only gives the basic structure stated in the paper.
But users can implement different type of transitions to fully explore the
the potential power of the structure of FPG.
Args:
in_channels (int): Number of input channels (feature maps of all levels
should have the same channels).
out_channels (int): Number of output channels (used at each scale)
num_outs (int): Number of output scales.
stack_times (int): The number of times the pyramid architecture will
be stacked.
paths (list[str]): Specify the path order of each stack level.
Each element in the list should be either 'bu' (bottom-up) or
'td' (top-down).
inter_channels (int): Number of inter channels.
same_up_trans (dict): Transition that goes down at the same stage.
same_down_trans (dict): Transition that goes up at the same stage.
across_lateral_trans (dict): Across-pathway same-stage
across_down_trans (dict): Across-pathway bottom-up connection.
across_up_trans (dict): Across-pathway top-down connection.
across_skip_trans (dict): Across-pathway skip connection.
output_trans (dict): Transition that trans the output of the
last stage.
start_level (int): Index of the start input backbone level used to
build the feature pyramid. Default: 0.
end_level (int): Index of the end input backbone level (exclusive) to
build the feature pyramid. Default: -1, which means the last level.
add_extra_convs (bool): It decides whether to add conv
layers on top of the original feature maps. Default to False.
If True, its actual mode is specified by `extra_convs_on_inputs`.
norm_cfg (dict): Config dict for normalization layer. Default: None.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
transition_types = {
'conv': ConvModule,
'interpolation_conv': UpInterpolationConv,
'last_conv': LastConv,
}
def __init__(self,
in_channels,
out_channels,
num_outs,
stack_times,
paths,
inter_channels=None,
same_down_trans=None,
same_up_trans=dict(
type='conv', kernel_size=3, stride=2, padding=1),
across_lateral_trans=dict(type='conv', kernel_size=1),
across_down_trans=dict(type='conv', kernel_size=3),
across_up_trans=None,
across_skip_trans=dict(type='identity'),
output_trans=dict(type='last_conv', kernel_size=3),
start_level=0,
end_level=-1,
add_extra_convs=False,
norm_cfg=None,
skip_inds=None,
init_cfg=[
dict(type='Caffe2Xavier', layer='Conv2d'),
dict(
type='Constant',
layer=[
'_BatchNorm', '_InstanceNorm', 'GroupNorm',
'LayerNorm'
],
val=1.0)
]):
super(FPG, self).__init__(init_cfg)
assert isinstance(in_channels, list)
self.in_channels = in_channels
self.out_channels = out_channels
self.num_ins = len(in_channels)
self.num_outs = num_outs
if inter_channels is None:
self.inter_channels = [out_channels for _ in range(num_outs)]
elif isinstance(inter_channels, int):
self.inter_channels = [inter_channels for _ in range(num_outs)]
else:
assert isinstance(inter_channels, list)
assert len(inter_channels) == num_outs
self.inter_channels = inter_channels
self.stack_times = stack_times
self.paths = paths
assert isinstance(paths, list) and len(paths) == stack_times
for d in paths:
assert d in ('bu', 'td')
self.same_down_trans = same_down_trans
self.same_up_trans = same_up_trans
self.across_lateral_trans = across_lateral_trans
self.across_down_trans = across_down_trans
self.across_up_trans = across_up_trans
self.output_trans = output_trans
self.across_skip_trans = across_skip_trans
self.with_bias = norm_cfg is None
# skip inds must be specified if across skip trans is not None
if self.across_skip_trans is not None:
skip_inds is not None
self.skip_inds = skip_inds
assert len(self.skip_inds[0]) <= self.stack_times
if end_level == -1 or end_level == self.num_ins - 1:
self.backbone_end_level = self.num_ins
assert num_outs >= self.num_ins - start_level
else:
# if end_level is not the last level, no extra level is allowed
self.backbone_end_level = end_level + 1
assert end_level < self.num_ins
assert num_outs == end_level - start_level + 1
self.start_level = start_level
self.end_level = end_level
self.add_extra_convs = add_extra_convs
# build lateral 1x1 convs to reduce channels
self.lateral_convs = nn.ModuleList()
for i in range(self.start_level, self.backbone_end_level):
l_conv = nn.Conv2d(self.in_channels[i],
self.inter_channels[i - self.start_level], 1)
self.lateral_convs.append(l_conv)
extra_levels = num_outs - self.backbone_end_level + self.start_level
self.extra_downsamples = nn.ModuleList()
for i in range(extra_levels):
if self.add_extra_convs:
fpn_idx = self.backbone_end_level - self.start_level + i
extra_conv = nn.Conv2d(
self.inter_channels[fpn_idx - 1],
self.inter_channels[fpn_idx],
3,
stride=2,
padding=1)
self.extra_downsamples.append(extra_conv)
else:
self.extra_downsamples.append(nn.MaxPool2d(1, stride=2))
self.fpn_transitions = nn.ModuleList() # stack times
for s in range(self.stack_times):
stage_trans = nn.ModuleList() # num of feature levels
for i in range(self.num_outs):
# same, across_lateral, across_down, across_up
trans = nn.ModuleDict()
if s in self.skip_inds[i]:
stage_trans.append(trans)
continue
# build same-stage down trans (used in bottom-up paths)
if i == 0 or self.same_up_trans is None:
same_up_trans = None
else:
same_up_trans = self.build_trans(
self.same_up_trans, self.inter_channels[i - 1],
self.inter_channels[i])
trans['same_up'] = same_up_trans
# build same-stage up trans (used in top-down paths)
if i == self.num_outs - 1 or self.same_down_trans is None:
same_down_trans = None
else:
same_down_trans = self.build_trans(
self.same_down_trans, self.inter_channels[i + 1],
self.inter_channels[i])
trans['same_down'] = same_down_trans
# build across lateral trans
across_lateral_trans = self.build_trans(
self.across_lateral_trans, self.inter_channels[i],
self.inter_channels[i])
trans['across_lateral'] = across_lateral_trans
# build across down trans
if i == self.num_outs - 1 or self.across_down_trans is None:
across_down_trans = None
else:
across_down_trans = self.build_trans(
self.across_down_trans, self.inter_channels[i + 1],
self.inter_channels[i])
trans['across_down'] = across_down_trans
# build across up trans
if i == 0 or self.across_up_trans is None:
across_up_trans = None
else:
across_up_trans = self.build_trans(
self.across_up_trans, self.inter_channels[i - 1],
self.inter_channels[i])
trans['across_up'] = across_up_trans
if self.across_skip_trans is None:
across_skip_trans = None
else:
across_skip_trans = self.build_trans(
self.across_skip_trans, self.inter_channels[i - 1],
self.inter_channels[i])
trans['across_skip'] = across_skip_trans
# build across_skip trans
stage_trans.append(trans)
self.fpn_transitions.append(stage_trans)
self.output_transition = nn.ModuleList() # output levels
for i in range(self.num_outs):
trans = self.build_trans(
self.output_trans,
self.inter_channels[i],
self.out_channels,
num_inputs=self.stack_times + 1)
self.output_transition.append(trans)
self.relu = nn.ReLU(inplace=True)
def build_trans(self, cfg, in_channels, out_channels, **extra_args):
cfg_ = cfg.copy()
trans_type = cfg_.pop('type')
trans_cls = self.transition_types[trans_type]
return trans_cls(in_channels, out_channels, **cfg_, **extra_args)
def fuse(self, fuse_dict):
out = None
for item in fuse_dict.values():
if item is not None:
if out is None:
out = item
else:
out = out + item
return out
def forward(self, inputs):
assert len(inputs) == len(self.in_channels)
# build all levels from original feature maps
feats = [
lateral_conv(inputs[i + self.start_level])
for i, lateral_conv in enumerate(self.lateral_convs)
]
for downsample in self.extra_downsamples:
feats.append(downsample(feats[-1]))
outs = [feats]
for i in range(self.stack_times):
current_outs = outs[-1]
next_outs = []
direction = self.paths[i]
for j in range(self.num_outs):
if i in self.skip_inds[j]:
next_outs.append(outs[-1][j])
continue
# feature level
if direction == 'td':
lvl = self.num_outs - j - 1
else:
lvl = j
# get transitions
if direction == 'td':
same_trans = self.fpn_transitions[i][lvl]['same_down']
else:
same_trans = self.fpn_transitions[i][lvl]['same_up']
across_lateral_trans = self.fpn_transitions[i][lvl][
'across_lateral']
across_down_trans = self.fpn_transitions[i][lvl]['across_down']
across_up_trans = self.fpn_transitions[i][lvl]['across_up']
across_skip_trans = self.fpn_transitions[i][lvl]['across_skip']
# init output
to_fuse = dict(
same=None, lateral=None, across_up=None, across_down=None)
# same downsample/upsample
if same_trans is not None:
to_fuse['same'] = same_trans(next_outs[-1])
# across lateral
if across_lateral_trans is not None:
to_fuse['lateral'] = across_lateral_trans(
current_outs[lvl])
# across downsample
if lvl > 0 and across_up_trans is not None:
to_fuse['across_up'] = across_up_trans(current_outs[lvl -
1])
# across upsample
if (lvl < self.num_outs - 1 and across_down_trans is not None):
to_fuse['across_down'] = across_down_trans(
current_outs[lvl + 1])
if across_skip_trans is not None:
to_fuse['across_skip'] = across_skip_trans(outs[0][lvl])
x = self.fuse(to_fuse)
next_outs.append(x)
if direction == 'td':
outs.append(next_outs[::-1])
else:
outs.append(next_outs)
# output trans
final_outs = []
for i in range(self.num_outs):
lvl_out_list = []
for s in range(len(outs)):
lvl_out_list.append(outs[s][i])
lvl_out = self.output_transition[i](lvl_out_list)
final_outs.append(lvl_out)
return final_outs