Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.registry import TASK_UTILS | |
from mmdet.utils import ConfigType | |
from .assign_result import AssignResult | |
from .base_assigner import BaseAssigner | |
INF = 100000.0 | |
EPS = 1.0e-7 | |
class SimOTAAssigner(BaseAssigner): | |
"""Computes matching between predictions and ground truth. | |
Args: | |
center_radius (float): Ground truth center size | |
to judge whether a prior is in center. Defaults to 2.5. | |
candidate_topk (int): The candidate top-k which used to | |
get top-k ious to calculate dynamic-k. Defaults to 10. | |
iou_weight (float): The scale factor for regression | |
iou cost. Defaults to 3.0. | |
cls_weight (float): The scale factor for classification | |
cost. Defaults to 1.0. | |
iou_calculator (ConfigType): Config of overlaps Calculator. | |
Defaults to dict(type='BboxOverlaps2D'). | |
""" | |
def __init__(self, | |
center_radius: float = 2.5, | |
candidate_topk: int = 10, | |
iou_weight: float = 3.0, | |
cls_weight: float = 1.0, | |
iou_calculator: ConfigType = dict(type='BboxOverlaps2D')): | |
self.center_radius = center_radius | |
self.candidate_topk = candidate_topk | |
self.iou_weight = iou_weight | |
self.cls_weight = cls_weight | |
self.iou_calculator = TASK_UTILS.build(iou_calculator) | |
def assign(self, | |
pred_instances: InstanceData, | |
gt_instances: InstanceData, | |
gt_instances_ignore: Optional[InstanceData] = None, | |
**kwargs) -> AssignResult: | |
"""Assign gt to priors using SimOTA. | |
Args: | |
pred_instances (:obj:`InstanceData`): Instances of model | |
predictions. It includes ``priors``, and the priors can | |
be anchors or points, or the bboxes predicted by the | |
previous stage, has shape (n, 4). The bboxes predicted by | |
the current model or stage will be named ``bboxes``, | |
``labels``, and ``scores``, the same as the ``InstanceData`` | |
in other places. | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It usually includes ``bboxes``, with shape (k, 4), | |
and ``labels``, with shape (k, ). | |
gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
to be ignored during training. It includes ``bboxes`` | |
attribute data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
obj:`AssignResult`: The assigned result. | |
""" | |
gt_bboxes = gt_instances.bboxes | |
gt_labels = gt_instances.labels | |
num_gt = gt_bboxes.size(0) | |
decoded_bboxes = pred_instances.bboxes | |
pred_scores = pred_instances.scores | |
priors = pred_instances.priors | |
num_bboxes = decoded_bboxes.size(0) | |
# assign 0 by default | |
assigned_gt_inds = decoded_bboxes.new_full((num_bboxes, ), | |
0, | |
dtype=torch.long) | |
if num_gt == 0 or num_bboxes == 0: | |
# No ground truth or boxes, return empty assignment | |
max_overlaps = decoded_bboxes.new_zeros((num_bboxes, )) | |
assigned_labels = decoded_bboxes.new_full((num_bboxes, ), | |
-1, | |
dtype=torch.long) | |
return AssignResult( | |
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) | |
valid_mask, is_in_boxes_and_center = self.get_in_gt_and_in_center_info( | |
priors, gt_bboxes) | |
valid_decoded_bbox = decoded_bboxes[valid_mask] | |
valid_pred_scores = pred_scores[valid_mask] | |
num_valid = valid_decoded_bbox.size(0) | |
if num_valid == 0: | |
# No valid bboxes, return empty assignment | |
max_overlaps = decoded_bboxes.new_zeros((num_bboxes, )) | |
assigned_labels = decoded_bboxes.new_full((num_bboxes, ), | |
-1, | |
dtype=torch.long) | |
return AssignResult( | |
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) | |
pairwise_ious = self.iou_calculator(valid_decoded_bbox, gt_bboxes) | |
iou_cost = -torch.log(pairwise_ious + EPS) | |
gt_onehot_label = ( | |
F.one_hot(gt_labels.to(torch.int64), | |
pred_scores.shape[-1]).float().unsqueeze(0).repeat( | |
num_valid, 1, 1)) | |
valid_pred_scores = valid_pred_scores.unsqueeze(1).repeat(1, num_gt, 1) | |
# disable AMP autocast and calculate BCE with FP32 to avoid overflow | |
with torch.cuda.amp.autocast(enabled=False): | |
cls_cost = ( | |
F.binary_cross_entropy( | |
valid_pred_scores.to(dtype=torch.float32), | |
gt_onehot_label, | |
reduction='none', | |
).sum(-1).to(dtype=valid_pred_scores.dtype)) | |
cost_matrix = ( | |
cls_cost * self.cls_weight + iou_cost * self.iou_weight + | |
(~is_in_boxes_and_center) * INF) | |
matched_pred_ious, matched_gt_inds = \ | |
self.dynamic_k_matching( | |
cost_matrix, pairwise_ious, num_gt, valid_mask) | |
# convert to AssignResult format | |
assigned_gt_inds[valid_mask] = matched_gt_inds + 1 | |
assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1) | |
assigned_labels[valid_mask] = gt_labels[matched_gt_inds].long() | |
max_overlaps = assigned_gt_inds.new_full((num_bboxes, ), | |
-INF, | |
dtype=torch.float32) | |
max_overlaps[valid_mask] = matched_pred_ious | |
return AssignResult( | |
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) | |
def get_in_gt_and_in_center_info( | |
self, priors: Tensor, gt_bboxes: Tensor) -> Tuple[Tensor, Tensor]: | |
"""Get the information of which prior is in gt bboxes and gt center | |
priors.""" | |
num_gt = gt_bboxes.size(0) | |
repeated_x = priors[:, 0].unsqueeze(1).repeat(1, num_gt) | |
repeated_y = priors[:, 1].unsqueeze(1).repeat(1, num_gt) | |
repeated_stride_x = priors[:, 2].unsqueeze(1).repeat(1, num_gt) | |
repeated_stride_y = priors[:, 3].unsqueeze(1).repeat(1, num_gt) | |
# is prior centers in gt bboxes, shape: [n_prior, n_gt] | |
l_ = repeated_x - gt_bboxes[:, 0] | |
t_ = repeated_y - gt_bboxes[:, 1] | |
r_ = gt_bboxes[:, 2] - repeated_x | |
b_ = gt_bboxes[:, 3] - repeated_y | |
deltas = torch.stack([l_, t_, r_, b_], dim=1) | |
is_in_gts = deltas.min(dim=1).values > 0 | |
is_in_gts_all = is_in_gts.sum(dim=1) > 0 | |
# is prior centers in gt centers | |
gt_cxs = (gt_bboxes[:, 0] + gt_bboxes[:, 2]) / 2.0 | |
gt_cys = (gt_bboxes[:, 1] + gt_bboxes[:, 3]) / 2.0 | |
ct_box_l = gt_cxs - self.center_radius * repeated_stride_x | |
ct_box_t = gt_cys - self.center_radius * repeated_stride_y | |
ct_box_r = gt_cxs + self.center_radius * repeated_stride_x | |
ct_box_b = gt_cys + self.center_radius * repeated_stride_y | |
cl_ = repeated_x - ct_box_l | |
ct_ = repeated_y - ct_box_t | |
cr_ = ct_box_r - repeated_x | |
cb_ = ct_box_b - repeated_y | |
ct_deltas = torch.stack([cl_, ct_, cr_, cb_], dim=1) | |
is_in_cts = ct_deltas.min(dim=1).values > 0 | |
is_in_cts_all = is_in_cts.sum(dim=1) > 0 | |
# in boxes or in centers, shape: [num_priors] | |
is_in_gts_or_centers = is_in_gts_all | is_in_cts_all | |
# both in boxes and centers, shape: [num_fg, num_gt] | |
is_in_boxes_and_centers = ( | |
is_in_gts[is_in_gts_or_centers, :] | |
& is_in_cts[is_in_gts_or_centers, :]) | |
return is_in_gts_or_centers, is_in_boxes_and_centers | |
def dynamic_k_matching(self, cost: Tensor, pairwise_ious: Tensor, | |
num_gt: int, | |
valid_mask: Tensor) -> Tuple[Tensor, Tensor]: | |
"""Use IoU and matching cost to calculate the dynamic top-k positive | |
targets.""" | |
matching_matrix = torch.zeros_like(cost, dtype=torch.uint8) | |
# select candidate topk ious for dynamic-k calculation | |
candidate_topk = min(self.candidate_topk, pairwise_ious.size(0)) | |
topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=0) | |
# calculate dynamic k for each gt | |
dynamic_ks = torch.clamp(topk_ious.sum(0).int(), min=1) | |
for gt_idx in range(num_gt): | |
_, pos_idx = torch.topk( | |
cost[:, gt_idx], k=dynamic_ks[gt_idx], largest=False) | |
matching_matrix[:, gt_idx][pos_idx] = 1 | |
del topk_ious, dynamic_ks, pos_idx | |
prior_match_gt_mask = matching_matrix.sum(1) > 1 | |
if prior_match_gt_mask.sum() > 0: | |
cost_min, cost_argmin = torch.min( | |
cost[prior_match_gt_mask, :], dim=1) | |
matching_matrix[prior_match_gt_mask, :] *= 0 | |
matching_matrix[prior_match_gt_mask, cost_argmin] = 1 | |
# get foreground mask inside box and center prior | |
fg_mask_inboxes = matching_matrix.sum(1) > 0 | |
valid_mask[valid_mask.clone()] = fg_mask_inboxes | |
matched_gt_inds = matching_matrix[fg_mask_inboxes, :].argmax(1) | |
matched_pred_ious = (matching_matrix * | |
pairwise_ious).sum(1)[fg_mask_inboxes] | |
return matched_pred_ious, matched_gt_inds | |