Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Dict, List, Optional | |
import mmcv | |
import numpy as np | |
from mmengine.dist import master_only | |
from mmengine.structures import PixelData | |
from mmengine.visualization import Visualizer | |
from mmseg.registry import VISUALIZERS | |
from mmseg.structures import SegDataSample | |
from mmseg.utils import get_classes, get_palette | |
class SegLocalVisualizer(Visualizer): | |
"""Local Visualizer. | |
Args: | |
name (str): Name of the instance. Defaults to 'visualizer'. | |
image (np.ndarray, optional): the origin image to draw. The format | |
should be RGB. Defaults to None. | |
vis_backends (list, optional): Visual backend config list. | |
Defaults to None. | |
save_dir (str, optional): Save file dir for all storage backends. | |
If it is None, the backend storage will not save any data. | |
classes (list, optional): Input classes for result rendering, as the | |
prediction of segmentation model is a segment map with label | |
indices, `classes` is a list which includes items responding to the | |
label indices. If classes is not defined, visualizer will take | |
`cityscapes` classes by default. Defaults to None. | |
palette (list, optional): Input palette for result rendering, which is | |
a list of color palette responding to the classes. Defaults to None. | |
dataset_name (str, optional): `Dataset name or alias <https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/utils/class_names.py#L302-L317>`_ | |
visulizer will use the meta information of the dataset i.e. classes | |
and palette, but the `classes` and `palette` have higher priority. | |
Defaults to None. | |
alpha (int, float): The transparency of segmentation mask. | |
Defaults to 0.8. | |
Examples: | |
>>> import numpy as np | |
>>> import torch | |
>>> from mmengine.structures import PixelData | |
>>> from mmseg.data import SegDataSample | |
>>> from mmseg.engine.visualization import SegLocalVisualizer | |
>>> seg_local_visualizer = SegLocalVisualizer() | |
>>> image = np.random.randint(0, 256, | |
... size=(10, 12, 3)).astype('uint8') | |
>>> gt_sem_seg_data = dict(data=torch.randint(0, 2, (1, 10, 12))) | |
>>> gt_sem_seg = PixelData(**gt_sem_seg_data) | |
>>> gt_seg_data_sample = SegDataSample() | |
>>> gt_seg_data_sample.gt_sem_seg = gt_sem_seg | |
>>> seg_local_visualizer.dataset_meta = dict( | |
>>> classes=('background', 'foreground'), | |
>>> palette=[[120, 120, 120], [6, 230, 230]]) | |
>>> seg_local_visualizer.add_datasample('visualizer_example', | |
... image, gt_seg_data_sample) | |
>>> seg_local_visualizer.add_datasample( | |
... 'visualizer_example', image, | |
... gt_seg_data_sample, show=True) | |
""" # noqa | |
def __init__(self, | |
name: str = 'visualizer', | |
image: Optional[np.ndarray] = None, | |
vis_backends: Optional[Dict] = None, | |
save_dir: Optional[str] = None, | |
classes: Optional[List] = None, | |
palette: Optional[List] = None, | |
dataset_name: Optional[str] = None, | |
alpha: float = 0.8, | |
**kwargs): | |
super().__init__(name, image, vis_backends, save_dir, **kwargs) | |
self.alpha: float = alpha | |
self.set_dataset_meta(palette, classes, dataset_name) | |
def _draw_sem_seg(self, image: np.ndarray, sem_seg: PixelData, | |
classes: Optional[List], | |
palette: Optional[List]) -> np.ndarray: | |
"""Draw semantic seg of GT or prediction. | |
Args: | |
image (np.ndarray): The image to draw. | |
sem_seg (:obj:`PixelData`): Data structure for pixel-level | |
annotations or predictions. | |
classes (list, optional): Input classes for result rendering, as | |
the prediction of segmentation model is a segment map with | |
label indices, `classes` is a list which includes items | |
responding to the label indices. If classes is not defined, | |
visualizer will take `cityscapes` classes by default. | |
Defaults to None. | |
palette (list, optional): Input palette for result rendering, which | |
is a list of color palette responding to the classes. | |
Defaults to None. | |
Returns: | |
np.ndarray: the drawn image which channel is RGB. | |
""" | |
num_classes = len(classes) | |
sem_seg = sem_seg.cpu().data | |
ids = np.unique(sem_seg)[::-1] | |
legal_indices = ids < num_classes | |
ids = ids[legal_indices] | |
labels = np.array(ids, dtype=np.int64) | |
colors = [palette[label] for label in labels] | |
self.set_image(image) | |
# draw semantic masks | |
for label, color in zip(labels, colors): | |
self.draw_binary_masks( | |
sem_seg == label, colors=[color], alphas=self.alpha) | |
return self.get_image() | |
def set_dataset_meta(self, | |
classes: Optional[List] = None, | |
palette: Optional[List] = None, | |
dataset_name: Optional[str] = None) -> None: | |
"""Set meta information to visualizer. | |
Args: | |
classes (list, optional): Input classes for result rendering, as | |
the prediction of segmentation model is a segment map with | |
label indices, `classes` is a list which includes items | |
responding to the label indices. If classes is not defined, | |
visualizer will take `cityscapes` classes by default. | |
Defaults to None. | |
palette (list, optional): Input palette for result rendering, which | |
is a list of color palette responding to the classes. | |
Defaults to None. | |
dataset_name (str, optional): `Dataset name or alias <https://github.com/open-mmlab/mmsegmentation/blob/main/mmseg/utils/class_names.py#L302-L317>`_ | |
visulizer will use the meta information of the dataset i.e. | |
classes and palette, but the `classes` and `palette` have | |
higher priority. Defaults to None. | |
""" # noqa | |
# Set default value. When calling | |
# `SegLocalVisualizer().dataset_meta=xxx`, | |
# it will override the default value. | |
if dataset_name is None: | |
dataset_name = 'cityscapes' | |
classes = classes if classes else get_classes(dataset_name) | |
palette = palette if palette else get_palette(dataset_name) | |
assert len(classes) == len( | |
palette), 'The length of classes should be equal to palette' | |
self.dataset_meta: dict = {'classes': classes, 'palette': palette} | |
def add_datasample( | |
self, | |
name: str, | |
image: np.ndarray, | |
data_sample: Optional[SegDataSample] = None, | |
draw_gt: bool = True, | |
draw_pred: bool = True, | |
show: bool = False, | |
wait_time: float = 0, | |
# TODO: Supported in mmengine's Viusalizer. | |
out_file: Optional[str] = None, | |
step: int = 0) -> None: | |
"""Draw datasample and save to all backends. | |
- If GT and prediction are plotted at the same time, they are | |
displayed in a stitched image where the left image is the | |
ground truth and the right image is the prediction. | |
- If ``show`` is True, all storage backends are ignored, and | |
the images will be displayed in a local window. | |
- If ``out_file`` is specified, the drawn image will be | |
saved to ``out_file``. it is usually used when the display | |
is not available. | |
Args: | |
name (str): The image identifier. | |
image (np.ndarray): The image to draw. | |
gt_sample (:obj:`SegDataSample`, optional): GT SegDataSample. | |
Defaults to None. | |
pred_sample (:obj:`SegDataSample`, optional): Prediction | |
SegDataSample. Defaults to None. | |
draw_gt (bool): Whether to draw GT SegDataSample. Default to True. | |
draw_pred (bool): Whether to draw Prediction SegDataSample. | |
Defaults to True. | |
show (bool): Whether to display the drawn image. Default to False. | |
wait_time (float): The interval of show (s). Defaults to 0. | |
out_file (str): Path to output file. Defaults to None. | |
step (int): Global step value to record. Defaults to 0. | |
""" | |
classes = self.dataset_meta.get('classes', None) | |
palette = self.dataset_meta.get('palette', None) | |
gt_img_data = None | |
pred_img_data = None | |
if draw_gt and data_sample is not None and 'gt_sem_seg' in data_sample: | |
gt_img_data = image | |
assert classes is not None, 'class information is ' \ | |
'not provided when ' \ | |
'visualizing semantic ' \ | |
'segmentation results.' | |
gt_img_data = self._draw_sem_seg(gt_img_data, | |
data_sample.gt_sem_seg, classes, | |
palette) | |
if (draw_pred and data_sample is not None | |
and 'pred_sem_seg' in data_sample): | |
pred_img_data = image | |
assert classes is not None, 'class information is ' \ | |
'not provided when ' \ | |
'visualizing semantic ' \ | |
'segmentation results.' | |
pred_img_data = self._draw_sem_seg(pred_img_data, | |
data_sample.pred_sem_seg, | |
classes, palette) | |
if gt_img_data is not None and pred_img_data is not None: | |
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1) | |
elif gt_img_data is not None: | |
drawn_img = gt_img_data | |
else: | |
drawn_img = pred_img_data | |
if show: | |
self.show(drawn_img, win_name=name, wait_time=wait_time) | |
if out_file is not None: | |
mmcv.imwrite(mmcv.bgr2rgb(drawn_img), out_file) | |
else: | |
self.add_image(name, drawn_img, step) | |