Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
def accuracy(pred, target, topk=1, thresh=None, ignore_index=None): | |
"""Calculate accuracy according to the prediction and target. | |
Args: | |
pred (torch.Tensor): The model prediction, shape (N, num_class, ...) | |
target (torch.Tensor): The target of each prediction, shape (N, , ...) | |
ignore_index (int | None): The label index to be ignored. Default: None | |
topk (int | tuple[int], optional): If the predictions in ``topk`` | |
matches the target, the predictions will be regarded as | |
correct ones. Defaults to 1. | |
thresh (float, optional): If not None, predictions with scores under | |
this threshold are considered incorrect. Default to None. | |
Returns: | |
float | tuple[float]: If the input ``topk`` is a single integer, | |
the function will return a single float as accuracy. If | |
``topk`` is a tuple containing multiple integers, the | |
function will return a tuple containing accuracies of | |
each ``topk`` number. | |
""" | |
assert isinstance(topk, (int, tuple)) | |
if isinstance(topk, int): | |
topk = (topk, ) | |
return_single = True | |
else: | |
return_single = False | |
maxk = max(topk) | |
if pred.size(0) == 0: | |
accu = [pred.new_tensor(0.) for i in range(len(topk))] | |
return accu[0] if return_single else accu | |
assert pred.ndim == target.ndim + 1 | |
assert pred.size(0) == target.size(0) | |
assert maxk <= pred.size(1), \ | |
f'maxk {maxk} exceeds pred dimension {pred.size(1)}' | |
pred_value, pred_label = pred.topk(maxk, dim=1) | |
# transpose to shape (maxk, N, ...) | |
pred_label = pred_label.transpose(0, 1) | |
correct = pred_label.eq(target.unsqueeze(0).expand_as(pred_label)) | |
if thresh is not None: | |
# Only prediction values larger than thresh are counted as correct | |
correct = correct & (pred_value > thresh).t() | |
if ignore_index is not None: | |
correct = correct[:, target != ignore_index] | |
res = [] | |
eps = torch.finfo(torch.float32).eps | |
for k in topk: | |
# Avoid causing ZeroDivisionError when all pixels | |
# of an image are ignored | |
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) + eps | |
if ignore_index is not None: | |
total_num = target[target != ignore_index].numel() + eps | |
else: | |
total_num = target.numel() + eps | |
res.append(correct_k.mul_(100.0 / total_num)) | |
return res[0] if return_single else res | |
class Accuracy(nn.Module): | |
"""Accuracy calculation module.""" | |
def __init__(self, topk=(1, ), thresh=None, ignore_index=None): | |
"""Module to calculate the accuracy. | |
Args: | |
topk (tuple, optional): The criterion used to calculate the | |
accuracy. Defaults to (1,). | |
thresh (float, optional): If not None, predictions with scores | |
under this threshold are considered incorrect. Default to None. | |
""" | |
super().__init__() | |
self.topk = topk | |
self.thresh = thresh | |
self.ignore_index = ignore_index | |
def forward(self, pred, target): | |
"""Forward function to calculate accuracy. | |
Args: | |
pred (torch.Tensor): Prediction of models. | |
target (torch.Tensor): Target for each prediction. | |
Returns: | |
tuple[float]: The accuracies under different topk criterions. | |
""" | |
return accuracy(pred, target, self.topk, self.thresh, | |
self.ignore_index) | |