Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from mmseg.registry import DATASETS | |
from .basesegdataset import BaseSegDataset | |
class COCOStuffDataset(BaseSegDataset): | |
"""COCO-Stuff dataset. | |
In segmentation map annotation for COCO-Stuff, Train-IDs of the 10k version | |
are from 1 to 171, where 0 is the ignore index, and Train-ID of COCO Stuff | |
164k is from 0 to 170, where 255 is the ignore index. So, they are all 171 | |
semantic categories. ``reduce_zero_label`` is set to True and False for the | |
10k and 164k versions, respectively. The ``img_suffix`` is fixed to '.jpg', | |
and ``seg_map_suffix`` is fixed to '.png'. | |
""" | |
METAINFO = dict( | |
classes=( | |
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', | |
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', | |
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', | |
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', | |
'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', | |
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', | |
'baseball glove', 'skateboard', 'surfboard', 'tennis racket', | |
'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', | |
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', | |
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', | |
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', | |
'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', | |
'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', | |
'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner', | |
'blanket', 'branch', 'bridge', 'building-other', 'bush', 'cabinet', | |
'cage', 'cardboard', 'carpet', 'ceiling-other', 'ceiling-tile', | |
'cloth', 'clothes', 'clouds', 'counter', 'cupboard', 'curtain', | |
'desk-stuff', 'dirt', 'door-stuff', 'fence', 'floor-marble', | |
'floor-other', 'floor-stone', 'floor-tile', 'floor-wood', 'flower', | |
'fog', 'food-other', 'fruit', 'furniture-other', 'grass', 'gravel', | |
'ground-other', 'hill', 'house', 'leaves', 'light', 'mat', 'metal', | |
'mirror-stuff', 'moss', 'mountain', 'mud', 'napkin', 'net', | |
'paper', 'pavement', 'pillow', 'plant-other', 'plastic', | |
'platform', 'playingfield', 'railing', 'railroad', 'river', 'road', | |
'rock', 'roof', 'rug', 'salad', 'sand', 'sea', 'shelf', | |
'sky-other', 'skyscraper', 'snow', 'solid-other', 'stairs', | |
'stone', 'straw', 'structural-other', 'table', 'tent', | |
'textile-other', 'towel', 'tree', 'vegetable', 'wall-brick', | |
'wall-concrete', 'wall-other', 'wall-panel', 'wall-stone', | |
'wall-tile', 'wall-wood', 'water-other', 'waterdrops', | |
'window-blind', 'window-other', 'wood'), | |
palette=[[0, 192, 64], [0, 192, 64], [0, 64, 96], [128, 192, 192], | |
[0, 64, 64], [0, 192, 224], [0, 192, 192], [128, 192, 64], | |
[0, 192, 96], [128, 192, 64], [128, 32, 192], [0, 0, 224], | |
[0, 0, 64], [0, 160, 192], [128, 0, 96], [128, 0, 192], | |
[0, 32, 192], [128, 128, 224], [0, 0, 192], [128, 160, 192], | |
[128, 128, 0], [128, 0, 32], [128, 32, 0], [128, 0, 128], | |
[64, 128, 32], [0, 160, 0], [0, 0, 0], [192, 128, 160], | |
[0, 32, 0], [0, 128, 128], [64, 128, 160], [128, 160, 0], | |
[0, 128, 0], [192, 128, 32], [128, 96, 128], [0, 0, 128], | |
[64, 0, 32], [0, 224, 128], [128, 0, 0], [192, 0, 160], | |
[0, 96, 128], [128, 128, 128], [64, 0, 160], [128, 224, 128], | |
[128, 128, 64], [192, 0, 32], [128, 96, 0], [128, 0, 192], | |
[0, 128, 32], [64, 224, 0], [0, 0, 64], [128, 128, 160], | |
[64, 96, 0], [0, 128, 192], [0, 128, 160], [192, 224, 0], | |
[0, 128, 64], [128, 128, 32], [192, 32, 128], [0, 64, 192], | |
[0, 0, 32], [64, 160, 128], [128, 64, 64], [128, 0, 160], | |
[64, 32, 128], [128, 192, 192], [0, 0, 160], [192, 160, 128], | |
[128, 192, 0], [128, 0, 96], [192, 32, 0], [128, 64, 128], | |
[64, 128, 96], [64, 160, 0], [0, 64, 0], [192, 128, 224], | |
[64, 32, 0], [0, 192, 128], [64, 128, 224], [192, 160, 0], | |
[0, 192, 0], [192, 128, 96], [192, 96, 128], [0, 64, 128], | |
[64, 0, 96], [64, 224, 128], [128, 64, 0], [192, 0, 224], | |
[64, 96, 128], [128, 192, 128], [64, 0, 224], [192, 224, 128], | |
[128, 192, 64], [192, 0, 96], [192, 96, 0], [128, 64, 192], | |
[0, 128, 96], [0, 224, 0], [64, 64, 64], [128, 128, 224], | |
[0, 96, 0], [64, 192, 192], [0, 128, 224], [128, 224, 0], | |
[64, 192, 64], [128, 128, 96], [128, 32, 128], [64, 0, 192], | |
[0, 64, 96], [0, 160, 128], [192, 0, 64], [128, 64, 224], | |
[0, 32, 128], [192, 128, 192], [0, 64, 224], [128, 160, 128], | |
[192, 128, 0], [128, 64, 32], [128, 32, 64], [192, 0, 128], | |
[64, 192, 32], [0, 160, 64], [64, 0, 0], [192, 192, 160], | |
[0, 32, 64], [64, 128, 128], [64, 192, 160], [128, 160, 64], | |
[64, 128, 0], [192, 192, 32], [128, 96, 192], [64, 0, 128], | |
[64, 64, 32], [0, 224, 192], [192, 0, 0], [192, 64, 160], | |
[0, 96, 192], [192, 128, 128], [64, 64, 160], [128, 224, 192], | |
[192, 128, 64], [192, 64, 32], [128, 96, 64], [192, 0, 192], | |
[0, 192, 32], [64, 224, 64], [64, 0, 64], [128, 192, 160], | |
[64, 96, 64], [64, 128, 192], [0, 192, 160], [192, 224, 64], | |
[64, 128, 64], [128, 192, 32], [192, 32, 192], [64, 64, 192], | |
[0, 64, 32], [64, 160, 192], [192, 64, 64], [128, 64, 160], | |
[64, 32, 192], [192, 192, 192], [0, 64, 160], [192, 160, 192], | |
[192, 192, 0], [128, 64, 96], [192, 32, 64], [192, 64, 128], | |
[64, 192, 96], [64, 160, 64], [64, 64, 0]]) | |
def __init__(self, | |
img_suffix='.jpg', | |
seg_map_suffix='_labelTrainIds.png', | |
**kwargs) -> None: | |
super().__init__( | |
img_suffix=img_suffix, seg_map_suffix=seg_map_suffix, **kwargs) | |