Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from math import cos, pi | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from mmengine.logging import MessageHub | |
from mmengine.model import ExponentialMovingAverage | |
from mmpretrain.registry import MODELS | |
class CosineEMA(ExponentialMovingAverage): | |
r"""CosineEMA is implemented for updating momentum parameter, used in BYOL, | |
MoCoV3, etc. | |
All parameters are updated by the formula as below: | |
.. math:: | |
X'_{t+1} = (1 - m) * X'_t + m * X_t | |
Where :math:`m` the the momentum parameter. And it's updated with cosine | |
annealing, including momentum adjustment following: | |
.. math:: | |
m = m_{end} + (m_{end} - m_{start}) * (\cos\frac{k\pi}{K} + 1) / 2 | |
where :math:`k` is the current step, :math:`K` is the total steps. | |
.. note:: | |
This :attr:`momentum` argument is different from one used in optimizer | |
classes and the conventional notion of momentum. Mathematically, | |
:math:`X'_{t}` is the moving average and :math:`X_t` is the new | |
observed value. The value of momentum is usually a small number, | |
allowing observed values to slowly update the ema parameters. See also | |
:external:py:class:`torch.nn.BatchNorm2d`. | |
Args: | |
model (nn.Module): The model to be averaged. | |
momentum (float): The start momentum value. Defaults to 0.004. | |
end_momentum (float): The end momentum value for cosine annealing. | |
Defaults to 0. | |
interval (int): Interval between two updates. Defaults to 1. | |
device (torch.device, optional): If provided, the averaged model will | |
be stored on the :attr:`device`. Defaults to None. | |
update_buffers (bool): if True, it will compute running averages for | |
both the parameters and the buffers of the model. Defaults to | |
False. | |
""" | |
def __init__(self, | |
model: nn.Module, | |
momentum: float = 0.004, | |
end_momentum: float = 0., | |
interval: int = 1, | |
device: Optional[torch.device] = None, | |
update_buffers: bool = False) -> None: | |
super().__init__( | |
model=model, | |
momentum=momentum, | |
interval=interval, | |
device=device, | |
update_buffers=update_buffers) | |
self.end_momentum = end_momentum | |
def avg_func(self, averaged_param: torch.Tensor, | |
source_param: torch.Tensor, steps: int) -> None: | |
"""Compute the moving average of the parameters using the cosine | |
momentum strategy. | |
Args: | |
averaged_param (Tensor): The averaged parameters. | |
source_param (Tensor): The source parameters. | |
steps (int): The number of times the parameters have been | |
updated. | |
Returns: | |
Tensor: The averaged parameters. | |
""" | |
message_hub = MessageHub.get_current_instance() | |
max_iters = message_hub.get_info('max_iters') | |
cosine_annealing = (cos(pi * steps / float(max_iters)) + 1) / 2 | |
momentum = self.end_momentum - (self.end_momentum - | |
self.momentum) * cosine_annealing | |
averaged_param.mul_(1 - momentum).add_(source_param, alpha=momentum) | |